Metamath Proof Explorer


Theorem cnf

Description: A continuous function is a mapping. (Contributed by FL, 8-Dec-2006) (Revised by Mario Carneiro, 21-Aug-2015)

Ref Expression
Hypotheses iscnp2.1 X=J
iscnp2.2 Y=K
Assertion cnf FJCnKF:XY

Proof

Step Hyp Ref Expression
1 iscnp2.1 X=J
2 iscnp2.2 Y=K
3 1 2 iscn2 FJCnKJTopKTopF:XYxKF-1xJ
4 3 simprbi FJCnKF:XYxKF-1xJ
5 4 simpld FJCnKF:XY