Description: Continuity of a restriction from a subspace. (Contributed by Jeff Hankins, 11-Jul-2009) (Revised by Mario Carneiro, 21-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | cnrest.1 | |
|
Assertion | cnrest | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnrest.1 | |
|
2 | eqid | |
|
3 | 1 2 | cnf | |
4 | 3 | adantr | |
5 | simpr | |
|
6 | 4 5 | fssresd | |
7 | cnvresima | |
|
8 | cntop1 | |
|
9 | 8 | adantr | |
10 | 9 | adantr | |
11 | 1 | topopn | |
12 | ssexg | |
|
13 | 12 | ancoms | |
14 | 11 13 | sylan | |
15 | 8 14 | sylan | |
16 | 15 | adantr | |
17 | cnima | |
|
18 | 17 | adantlr | |
19 | elrestr | |
|
20 | 10 16 18 19 | syl3anc | |
21 | 7 20 | eqeltrid | |
22 | 21 | ralrimiva | |
23 | 1 | toptopon | |
24 | 8 23 | sylib | |
25 | resttopon | |
|
26 | 24 25 | sylan | |
27 | cntop2 | |
|
28 | 27 | adantr | |
29 | 2 | toptopon | |
30 | 28 29 | sylib | |
31 | iscn | |
|
32 | 26 30 31 | syl2anc | |
33 | 6 22 32 | mpbir2and | |