Metamath Proof Explorer


Theorem cnrest

Description: Continuity of a restriction from a subspace. (Contributed by Jeff Hankins, 11-Jul-2009) (Revised by Mario Carneiro, 21-Aug-2015)

Ref Expression
Hypothesis cnrest.1 X=J
Assertion cnrest FJCnKAXFAJ𝑡ACnK

Proof

Step Hyp Ref Expression
1 cnrest.1 X=J
2 eqid K=K
3 1 2 cnf FJCnKF:XK
4 3 adantr FJCnKAXF:XK
5 simpr FJCnKAXAX
6 4 5 fssresd FJCnKAXFA:AK
7 cnvresima FA-1o=F-1oA
8 cntop1 FJCnKJTop
9 8 adantr FJCnKAXJTop
10 9 adantr FJCnKAXoKJTop
11 1 topopn JTopXJ
12 ssexg AXXJAV
13 12 ancoms XJAXAV
14 11 13 sylan JTopAXAV
15 8 14 sylan FJCnKAXAV
16 15 adantr FJCnKAXoKAV
17 cnima FJCnKoKF-1oJ
18 17 adantlr FJCnKAXoKF-1oJ
19 elrestr JTopAVF-1oJF-1oAJ𝑡A
20 10 16 18 19 syl3anc FJCnKAXoKF-1oAJ𝑡A
21 7 20 eqeltrid FJCnKAXoKFA-1oJ𝑡A
22 21 ralrimiva FJCnKAXoKFA-1oJ𝑡A
23 1 toptopon JTopJTopOnX
24 8 23 sylib FJCnKJTopOnX
25 resttopon JTopOnXAXJ𝑡ATopOnA
26 24 25 sylan FJCnKAXJ𝑡ATopOnA
27 cntop2 FJCnKKTop
28 27 adantr FJCnKAXKTop
29 2 toptopon KTopKTopOnK
30 28 29 sylib FJCnKAXKTopOnK
31 iscn J𝑡ATopOnAKTopOnKFAJ𝑡ACnKFA:AKoKFA-1oJ𝑡A
32 26 30 31 syl2anc FJCnKAXFAJ𝑡ACnKFA:AKoKFA-1oJ𝑡A
33 6 22 32 mpbir2and FJCnKAXFAJ𝑡ACnK