Metamath Proof Explorer


Theorem in32

Description: A rearrangement of intersection. (Contributed by NM, 21-Apr-2001) (Proof shortened by Andrew Salmon, 26-Jun-2011)

Ref Expression
Assertion in32 ABC=ACB

Proof

Step Hyp Ref Expression
1 inass ABC=ABC
2 in12 ABC=BAC
3 incom BAC=ACB
4 1 2 3 3eqtri ABC=ACB