Description: A function from a compactly generated space is continuous iff it is continuous "on compacta". (Contributed by Mario Carneiro, 21-Mar-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | kgencn | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | kgentopon | |
|
2 | iscn | |
|
3 | 1 2 | sylan | |
4 | cnvimass | |
|
5 | fdm | |
|
6 | 5 | adantl | |
7 | 4 6 | sseqtrid | |
8 | elkgen | |
|
9 | 8 | ad2antrr | |
10 | 7 9 | mpbirand | |
11 | 10 | ralbidv | |
12 | ralcom | |
|
13 | simpr | |
|
14 | elpwi | |
|
15 | fssres | |
|
16 | 13 14 15 | syl2an | |
17 | simpll | |
|
18 | resttopon | |
|
19 | 17 14 18 | syl2an | |
20 | simpllr | |
|
21 | iscn | |
|
22 | 19 20 21 | syl2anc | |
23 | 16 22 | mpbirand | |
24 | cnvresima | |
|
25 | 24 | eleq1i | |
26 | 25 | ralbii | |
27 | 23 26 | bitrdi | |
28 | 27 | imbi2d | |
29 | r19.21v | |
|
30 | 28 29 | bitr4di | |
31 | 30 | ralbidva | |
32 | 12 31 | bitr4id | |
33 | 11 32 | bitrd | |
34 | 33 | pm5.32da | |
35 | 3 34 | bitrd | |