Metamath Proof Explorer


Theorem kgencn

Description: A function from a compactly generated space is continuous iff it is continuous "on compacta". (Contributed by Mario Carneiro, 21-Mar-2015)

Ref Expression
Assertion kgencn JTopOnXKTopOnYF𝑘GenJCnKF:XYk𝒫XJ𝑡kCompFkJ𝑡kCnK

Proof

Step Hyp Ref Expression
1 kgentopon JTopOnX𝑘GenJTopOnX
2 iscn 𝑘GenJTopOnXKTopOnYF𝑘GenJCnKF:XYxKF-1x𝑘GenJ
3 1 2 sylan JTopOnXKTopOnYF𝑘GenJCnKF:XYxKF-1x𝑘GenJ
4 cnvimass F-1xdomF
5 fdm F:XYdomF=X
6 5 adantl JTopOnXKTopOnYF:XYdomF=X
7 4 6 sseqtrid JTopOnXKTopOnYF:XYF-1xX
8 elkgen JTopOnXF-1x𝑘GenJF-1xXk𝒫XJ𝑡kCompF-1xkJ𝑡k
9 8 ad2antrr JTopOnXKTopOnYF:XYF-1x𝑘GenJF-1xXk𝒫XJ𝑡kCompF-1xkJ𝑡k
10 7 9 mpbirand JTopOnXKTopOnYF:XYF-1x𝑘GenJk𝒫XJ𝑡kCompF-1xkJ𝑡k
11 10 ralbidv JTopOnXKTopOnYF:XYxKF-1x𝑘GenJxKk𝒫XJ𝑡kCompF-1xkJ𝑡k
12 ralcom xKk𝒫XJ𝑡kCompF-1xkJ𝑡kk𝒫XxKJ𝑡kCompF-1xkJ𝑡k
13 simpr JTopOnXKTopOnYF:XYF:XY
14 elpwi k𝒫XkX
15 fssres F:XYkXFk:kY
16 13 14 15 syl2an JTopOnXKTopOnYF:XYk𝒫XFk:kY
17 simpll JTopOnXKTopOnYF:XYJTopOnX
18 resttopon JTopOnXkXJ𝑡kTopOnk
19 17 14 18 syl2an JTopOnXKTopOnYF:XYk𝒫XJ𝑡kTopOnk
20 simpllr JTopOnXKTopOnYF:XYk𝒫XKTopOnY
21 iscn J𝑡kTopOnkKTopOnYFkJ𝑡kCnKFk:kYxKFk-1xJ𝑡k
22 19 20 21 syl2anc JTopOnXKTopOnYF:XYk𝒫XFkJ𝑡kCnKFk:kYxKFk-1xJ𝑡k
23 16 22 mpbirand JTopOnXKTopOnYF:XYk𝒫XFkJ𝑡kCnKxKFk-1xJ𝑡k
24 cnvresima Fk-1x=F-1xk
25 24 eleq1i Fk-1xJ𝑡kF-1xkJ𝑡k
26 25 ralbii xKFk-1xJ𝑡kxKF-1xkJ𝑡k
27 23 26 bitrdi JTopOnXKTopOnYF:XYk𝒫XFkJ𝑡kCnKxKF-1xkJ𝑡k
28 27 imbi2d JTopOnXKTopOnYF:XYk𝒫XJ𝑡kCompFkJ𝑡kCnKJ𝑡kCompxKF-1xkJ𝑡k
29 r19.21v xKJ𝑡kCompF-1xkJ𝑡kJ𝑡kCompxKF-1xkJ𝑡k
30 28 29 bitr4di JTopOnXKTopOnYF:XYk𝒫XJ𝑡kCompFkJ𝑡kCnKxKJ𝑡kCompF-1xkJ𝑡k
31 30 ralbidva JTopOnXKTopOnYF:XYk𝒫XJ𝑡kCompFkJ𝑡kCnKk𝒫XxKJ𝑡kCompF-1xkJ𝑡k
32 12 31 bitr4id JTopOnXKTopOnYF:XYxKk𝒫XJ𝑡kCompF-1xkJ𝑡kk𝒫XJ𝑡kCompFkJ𝑡kCnK
33 11 32 bitrd JTopOnXKTopOnYF:XYxKF-1x𝑘GenJk𝒫XJ𝑡kCompFkJ𝑡kCnK
34 33 pm5.32da JTopOnXKTopOnYF:XYxKF-1x𝑘GenJF:XYk𝒫XJ𝑡kCompFkJ𝑡kCnK
35 3 34 bitrd JTopOnXKTopOnYF𝑘GenJCnKF:XYk𝒫XJ𝑡kCompFkJ𝑡kCnK