Description: Obsolete proof of tuslem as of 28-Oct-2024. Lemma for tusbas , tusunif , and tustopn . (Contributed by Thierry Arnoux, 5-Dec-2017) (Proof modification is discouraged.) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypothesis | tuslem.k | |
|
Assertion | tuslemOLD | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tuslem.k | |
|
2 | baseid | |
|
3 | 1re | |
|
4 | 1lt9 | |
|
5 | 3 4 | ltneii | |
6 | basendx | |
|
7 | tsetndx | |
|
8 | 6 7 | neeq12i | |
9 | 5 8 | mpbir | |
10 | 2 9 | setsnid | |
11 | ustbas2 | |
|
12 | uniexg | |
|
13 | dmexg | |
|
14 | eqid | |
|
15 | df-unif | |
|
16 | 1nn | |
|
17 | 3nn0 | |
|
18 | 1nn0 | |
|
19 | 1lt10 | |
|
20 | 16 17 18 19 | declti | |
21 | 3nn | |
|
22 | 18 21 | decnncl | |
23 | 14 15 20 22 | 2strbas | |
24 | 12 13 23 | 3syl | |
25 | 11 24 | eqtrd | |
26 | tusval | |
|
27 | 1 26 | eqtrid | |
28 | 27 | fveq2d | |
29 | 10 25 28 | 3eqtr4a | |
30 | unifid | |
|
31 | 9re | |
|
32 | 9nn0 | |
|
33 | 9lt10 | |
|
34 | 16 17 32 33 | declti | |
35 | 31 34 | gtneii | |
36 | unifndx | |
|
37 | 36 7 | neeq12i | |
38 | 35 37 | mpbir | |
39 | 30 38 | setsnid | |
40 | 14 15 20 22 | 2strop | |
41 | 27 | fveq2d | |
42 | 39 40 41 | 3eqtr4a | |
43 | prex | |
|
44 | fvex | |
|
45 | tsetid | |
|
46 | 45 | setsid | |
47 | 43 44 46 | mp2an | |
48 | 27 | fveq2d | |
49 | 47 48 | eqtr4id | |
50 | utopbas | |
|
51 | 49 | unieqd | |
52 | 50 29 51 | 3eqtr3rd | |
53 | 52 | oveq2d | |
54 | fvex | |
|
55 | eqid | |
|
56 | 55 | restid | |
57 | 54 56 | ax-mp | |
58 | eqid | |
|
59 | eqid | |
|
60 | 58 59 | topnval | |
61 | 53 57 60 | 3eqtr3g | |
62 | 49 61 | eqtrd | |
63 | 29 42 62 | 3jca | |