Metamath Proof Explorer


Theorem 2strop

Description: The other slot of a constructed two-slot structure. (Contributed by Mario Carneiro, 29-Aug-2015) Use the index-independent version 2strop1 instead. (New usage is discouraged.)

Ref Expression
Hypotheses 2str.g G = Base ndx B E ndx + ˙
2str.e E = Slot N
2str.l 1 < N
2str.n N
Assertion 2strop + ˙ V + ˙ = E G

Proof

Step Hyp Ref Expression
1 2str.g G = Base ndx B E ndx + ˙
2 2str.e E = Slot N
3 2str.l 1 < N
4 2str.n N
5 1 2 3 4 2strstr G Struct 1 N
6 2 4 ndxid E = Slot E ndx
7 snsspr2 E ndx + ˙ Base ndx B E ndx + ˙
8 7 1 sseqtrri E ndx + ˙ G
9 5 6 8 strfv + ˙ V + ˙ = E G