Metamath Proof Explorer


Theorem 2strop

Description: The other slot of a constructed two-slot structure. (Contributed by Mario Carneiro, 29-Aug-2015) Use the index-independent version 2strop1 instead. (New usage is discouraged.)

Ref Expression
Hypotheses 2str.g G=BasendxBEndx+˙
2str.e E=SlotN
2str.l 1<N
2str.n N
Assertion 2strop +˙V+˙=EG

Proof

Step Hyp Ref Expression
1 2str.g G=BasendxBEndx+˙
2 2str.e E=SlotN
3 2str.l 1<N
4 2str.n N
5 1 2 3 4 2strstr GStruct1N
6 2 4 ndxid E=SlotEndx
7 snsspr2 Endx+˙BasendxBEndx+˙
8 7 1 sseqtrri Endx+˙G
9 5 6 8 strfv +˙V+˙=EG