Database
BASIC STRUCTURES
Extensible structures
Basic definitions
Base sets
2strstr
Metamath Proof Explorer
Description: A constructed two-slot structure. Depending on hard-coded indices. Use
2strstr1 instead. (Contributed by Mario Carneiro , 29-Aug-2015)
(New usage is discouraged.)
Ref
Expression
Hypotheses
2str.g
⊢ G = Base ndx B E ⁡ ndx + ˙
2str.e
⊢ E = Slot N
2str.l
⊢ 1 < N
2str.n
⊢ N ∈ ℕ
Assertion
2strstr
⊢ G Struct 1 N
Proof
Step
Hyp
Ref
Expression
1
2str.g
⊢ G = Base ndx B E ⁡ ndx + ˙
2
2str.e
⊢ E = Slot N
3
2str.l
⊢ 1 < N
4
2str.n
⊢ N ∈ ℕ
5
1nn
⊢ 1 ∈ ℕ
6
basendx
⊢ Base ndx = 1
7
2 4
ndxarg
⊢ E ⁡ ndx = N
8
5 6 3 4 7
strle2
⊢ Base ndx B E ⁡ ndx + ˙ Struct 1 N
9
1 8
eqbrtri
⊢ G Struct 1 N