Metamath Proof Explorer


Theorem 2strstr

Description: A constructed two-slot structure. Depending on hard-coded indices. Use 2strstr1 instead. (Contributed by Mario Carneiro, 29-Aug-2015) (New usage is discouraged.)

Ref Expression
Hypotheses 2str.g G = Base ndx B E ndx + ˙
2str.e E = Slot N
2str.l 1 < N
2str.n N
Assertion 2strstr G Struct 1 N

Proof

Step Hyp Ref Expression
1 2str.g G = Base ndx B E ndx + ˙
2 2str.e E = Slot N
3 2str.l 1 < N
4 2str.n N
5 1nn 1
6 basendx Base ndx = 1
7 2 4 ndxarg E ndx = N
8 5 6 3 4 7 strle2 Base ndx B E ndx + ˙ Struct 1 N
9 1 8 eqbrtri G Struct 1 N