Metamath Proof Explorer


Theorem 2strstr

Description: A constructed two-slot structure. Depending on hard-coded indices. Use 2strstr1 instead. (Contributed by Mario Carneiro, 29-Aug-2015) (New usage is discouraged.)

Ref Expression
Hypotheses 2str.g
|- G = { <. ( Base ` ndx ) , B >. , <. ( E ` ndx ) , .+ >. }
2str.e
|- E = Slot N
2str.l
|- 1 < N
2str.n
|- N e. NN
Assertion 2strstr
|- G Struct <. 1 , N >.

Proof

Step Hyp Ref Expression
1 2str.g
 |-  G = { <. ( Base ` ndx ) , B >. , <. ( E ` ndx ) , .+ >. }
2 2str.e
 |-  E = Slot N
3 2str.l
 |-  1 < N
4 2str.n
 |-  N e. NN
5 1nn
 |-  1 e. NN
6 basendx
 |-  ( Base ` ndx ) = 1
7 2 4 ndxarg
 |-  ( E ` ndx ) = N
8 5 6 3 4 7 strle2
 |-  { <. ( Base ` ndx ) , B >. , <. ( E ` ndx ) , .+ >. } Struct <. 1 , N >.
9 1 8 eqbrtri
 |-  G Struct <. 1 , N >.