Metamath Proof Explorer


Theorem 2strstr1

Description: A constructed two-slot structure. Version of 2strstr not depending on the hard-coded index value of the base set. (Contributed by AV, 22-Sep-2020) (Proof shortened by AV, 17-Oct-2024)

Ref Expression
Hypotheses 2str1.g G = Base ndx B N + ˙
2str1.b Base ndx < N
2str1.n N
Assertion 2strstr1 G Struct Base ndx N

Proof

Step Hyp Ref Expression
1 2str1.g G = Base ndx B N + ˙
2 2str1.b Base ndx < N
3 2str1.n N
4 basendxnn Base ndx
5 eqid Base ndx = Base ndx
6 eqid N = N
7 4 5 2 3 6 strle2 Base ndx B N + ˙ Struct Base ndx N
8 1 7 eqbrtri G Struct Base ndx N