Metamath Proof Explorer


Theorem 2strstr1

Description: A constructed two-slot structure. Version of 2strstr not depending on the hard-coded index value of the base set. (Contributed by AV, 22-Sep-2020) (Proof shortened by AV, 17-Oct-2024)

Ref Expression
Hypotheses 2str1.g G=BasendxBN+˙
2str1.b Basendx<N
2str1.n N
Assertion 2strstr1 GStructBasendxN

Proof

Step Hyp Ref Expression
1 2str1.g G=BasendxBN+˙
2 2str1.b Basendx<N
3 2str1.n N
4 basendxnn Basendx
5 eqid Basendx=Basendx
6 eqid N=N
7 4 5 2 3 6 strle2 BasendxBN+˙StructBasendxN
8 1 7 eqbrtri GStructBasendxN