| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tuslem.k |
⊢ 𝐾 = ( toUnifSp ‘ 𝑈 ) |
| 2 |
|
id |
⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ) |
| 3 |
1
|
tususs |
⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → 𝑈 = ( UnifSt ‘ 𝐾 ) ) |
| 4 |
1
|
tusbas |
⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → 𝑋 = ( Base ‘ 𝐾 ) ) |
| 5 |
4
|
fveq2d |
⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( UnifOn ‘ 𝑋 ) = ( UnifOn ‘ ( Base ‘ 𝐾 ) ) ) |
| 6 |
2 3 5
|
3eltr3d |
⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( UnifSt ‘ 𝐾 ) ∈ ( UnifOn ‘ ( Base ‘ 𝐾 ) ) ) |
| 7 |
1
|
tusunif |
⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → 𝑈 = ( UnifSet ‘ 𝐾 ) ) |
| 8 |
7
|
fveq2d |
⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( unifTop ‘ 𝑈 ) = ( unifTop ‘ ( UnifSet ‘ 𝐾 ) ) ) |
| 9 |
1
|
tuslem |
⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( 𝑋 = ( Base ‘ 𝐾 ) ∧ 𝑈 = ( UnifSet ‘ 𝐾 ) ∧ ( unifTop ‘ 𝑈 ) = ( TopOpen ‘ 𝐾 ) ) ) |
| 10 |
9
|
simp3d |
⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( unifTop ‘ 𝑈 ) = ( TopOpen ‘ 𝐾 ) ) |
| 11 |
7 3
|
eqtr3d |
⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( UnifSet ‘ 𝐾 ) = ( UnifSt ‘ 𝐾 ) ) |
| 12 |
11
|
fveq2d |
⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( unifTop ‘ ( UnifSet ‘ 𝐾 ) ) = ( unifTop ‘ ( UnifSt ‘ 𝐾 ) ) ) |
| 13 |
8 10 12
|
3eqtr3d |
⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( TopOpen ‘ 𝐾 ) = ( unifTop ‘ ( UnifSt ‘ 𝐾 ) ) ) |
| 14 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
| 15 |
|
eqid |
⊢ ( UnifSt ‘ 𝐾 ) = ( UnifSt ‘ 𝐾 ) |
| 16 |
|
eqid |
⊢ ( TopOpen ‘ 𝐾 ) = ( TopOpen ‘ 𝐾 ) |
| 17 |
14 15 16
|
isusp |
⊢ ( 𝐾 ∈ UnifSp ↔ ( ( UnifSt ‘ 𝐾 ) ∈ ( UnifOn ‘ ( Base ‘ 𝐾 ) ) ∧ ( TopOpen ‘ 𝐾 ) = ( unifTop ‘ ( UnifSt ‘ 𝐾 ) ) ) ) |
| 18 |
6 13 17
|
sylanbrc |
⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → 𝐾 ∈ UnifSp ) |