| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tuslem.k |
⊢ 𝐾 = ( toUnifSp ‘ 𝑈 ) |
| 2 |
|
utoptopon |
⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( unifTop ‘ 𝑈 ) ∈ ( TopOn ‘ 𝑋 ) ) |
| 3 |
|
eqid |
⊢ ( unifTop ‘ 𝑈 ) = ( unifTop ‘ 𝑈 ) |
| 4 |
1 3
|
tustopn |
⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( unifTop ‘ 𝑈 ) = ( TopOpen ‘ 𝐾 ) ) |
| 5 |
1
|
tusbas |
⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → 𝑋 = ( Base ‘ 𝐾 ) ) |
| 6 |
5
|
fveq2d |
⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( TopOn ‘ 𝑋 ) = ( TopOn ‘ ( Base ‘ 𝐾 ) ) ) |
| 7 |
2 4 6
|
3eltr3d |
⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( TopOpen ‘ 𝐾 ) ∈ ( TopOn ‘ ( Base ‘ 𝐾 ) ) ) |
| 8 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
| 9 |
|
eqid |
⊢ ( TopOpen ‘ 𝐾 ) = ( TopOpen ‘ 𝐾 ) |
| 10 |
8 9
|
istps |
⊢ ( 𝐾 ∈ TopSp ↔ ( TopOpen ‘ 𝐾 ) ∈ ( TopOn ‘ ( Base ‘ 𝐾 ) ) ) |
| 11 |
7 10
|
sylibr |
⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → 𝐾 ∈ TopSp ) |