| Step |
Hyp |
Ref |
Expression |
| 1 |
|
uspreg.1 |
⊢ 𝐽 = ( TopOpen ‘ 𝑊 ) |
| 2 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
| 3 |
|
eqid |
⊢ ( UnifSt ‘ 𝑊 ) = ( UnifSt ‘ 𝑊 ) |
| 4 |
2 3 1
|
isusp |
⊢ ( 𝑊 ∈ UnifSp ↔ ( ( UnifSt ‘ 𝑊 ) ∈ ( UnifOn ‘ ( Base ‘ 𝑊 ) ) ∧ 𝐽 = ( unifTop ‘ ( UnifSt ‘ 𝑊 ) ) ) ) |
| 5 |
4
|
simprbi |
⊢ ( 𝑊 ∈ UnifSp → 𝐽 = ( unifTop ‘ ( UnifSt ‘ 𝑊 ) ) ) |
| 6 |
5
|
adantr |
⊢ ( ( 𝑊 ∈ UnifSp ∧ 𝐽 ∈ Haus ) → 𝐽 = ( unifTop ‘ ( UnifSt ‘ 𝑊 ) ) ) |
| 7 |
4
|
simplbi |
⊢ ( 𝑊 ∈ UnifSp → ( UnifSt ‘ 𝑊 ) ∈ ( UnifOn ‘ ( Base ‘ 𝑊 ) ) ) |
| 8 |
|
simpr |
⊢ ( ( 𝑊 ∈ UnifSp ∧ 𝐽 ∈ Haus ) → 𝐽 ∈ Haus ) |
| 9 |
6 8
|
eqeltrrd |
⊢ ( ( 𝑊 ∈ UnifSp ∧ 𝐽 ∈ Haus ) → ( unifTop ‘ ( UnifSt ‘ 𝑊 ) ) ∈ Haus ) |
| 10 |
|
eqid |
⊢ ( unifTop ‘ ( UnifSt ‘ 𝑊 ) ) = ( unifTop ‘ ( UnifSt ‘ 𝑊 ) ) |
| 11 |
10
|
utopreg |
⊢ ( ( ( UnifSt ‘ 𝑊 ) ∈ ( UnifOn ‘ ( Base ‘ 𝑊 ) ) ∧ ( unifTop ‘ ( UnifSt ‘ 𝑊 ) ) ∈ Haus ) → ( unifTop ‘ ( UnifSt ‘ 𝑊 ) ) ∈ Reg ) |
| 12 |
7 9 11
|
syl2an2r |
⊢ ( ( 𝑊 ∈ UnifSp ∧ 𝐽 ∈ Haus ) → ( unifTop ‘ ( UnifSt ‘ 𝑊 ) ) ∈ Reg ) |
| 13 |
6 12
|
eqeltrd |
⊢ ( ( 𝑊 ∈ UnifSp ∧ 𝐽 ∈ Haus ) → 𝐽 ∈ Reg ) |