| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tuslem.k |
|- K = ( toUnifSp ` U ) |
| 2 |
|
utoptopon |
|- ( U e. ( UnifOn ` X ) -> ( unifTop ` U ) e. ( TopOn ` X ) ) |
| 3 |
|
eqid |
|- ( unifTop ` U ) = ( unifTop ` U ) |
| 4 |
1 3
|
tustopn |
|- ( U e. ( UnifOn ` X ) -> ( unifTop ` U ) = ( TopOpen ` K ) ) |
| 5 |
1
|
tusbas |
|- ( U e. ( UnifOn ` X ) -> X = ( Base ` K ) ) |
| 6 |
5
|
fveq2d |
|- ( U e. ( UnifOn ` X ) -> ( TopOn ` X ) = ( TopOn ` ( Base ` K ) ) ) |
| 7 |
2 4 6
|
3eltr3d |
|- ( U e. ( UnifOn ` X ) -> ( TopOpen ` K ) e. ( TopOn ` ( Base ` K ) ) ) |
| 8 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
| 9 |
|
eqid |
|- ( TopOpen ` K ) = ( TopOpen ` K ) |
| 10 |
8 9
|
istps |
|- ( K e. TopSp <-> ( TopOpen ` K ) e. ( TopOn ` ( Base ` K ) ) ) |
| 11 |
7 10
|
sylibr |
|- ( U e. ( UnifOn ` X ) -> K e. TopSp ) |