Description: The domain of a singleton of an ordered pair is the singleton of the first member. (Contributed by NM, 30-Jan-2004) (Proof shortened by Andrew Salmon, 27-Aug-2011) (Revised by Mario Carneiro, 26-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | dmsnop.1 | |- B e. _V  | 
					|
| Assertion | dmsnop | |- dom { <. A , B >. } = { A } | 
				
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | dmsnop.1 | |- B e. _V  | 
						|
| 2 | dmsnopg |  |-  ( B e. _V -> dom { <. A , B >. } = { A } ) | 
						|
| 3 | 1 2 | ax-mp |  |-  dom { <. A , B >. } = { A } |