Description: The domain of an unordered pair of ordered pairs. (Contributed by NM, 13-Sep-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dmsnop.1 | |- B e. _V  | 
					|
| dmprop.1 | |- D e. _V  | 
					||
| Assertion | dmprop | |- dom { <. A , B >. , <. C , D >. } = { A , C } | 
				
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | dmsnop.1 | |- B e. _V  | 
						|
| 2 | dmprop.1 | |- D e. _V  | 
						|
| 3 | dmpropg |  |-  ( ( B e. _V /\ D e. _V ) -> dom { <. A , B >. , <. C , D >. } = { A , C } ) | 
						|
| 4 | 1 2 3 | mp2an |  |-  dom { <. A , B >. , <. C , D >. } = { A , C } |