Metamath Proof Explorer


Theorem unifndxnbasendx

Description: The slot for the uniform set is not the slot for the base set in an extensible structure. (Contributed by AV, 21-Oct-2024)

Ref Expression
Assertion unifndxnbasendx UnifSetndxBasendx

Proof

Step Hyp Ref Expression
1 basendxnn Basendx
2 1 nnrei Basendx
3 basendxltunifndx Basendx<UnifSetndx
4 2 3 gtneii UnifSetndxBasendx