Metamath Proof Explorer


Theorem disjtpsn

Description: The disjoint intersection of an unordered triple and a singleton. (Contributed by AV, 14-Nov-2021)

Ref Expression
Assertion disjtpsn ADBDCDABCD=

Proof

Step Hyp Ref Expression
1 df-tp ABC=ABC
2 1 ineq1i ABCD=ABCD
3 disjprsn ADBDABD=
4 3 3adant3 ADBDCDABD=
5 disjsn2 CDCD=
6 5 3ad2ant3 ADBDCDCD=
7 4 6 jca ADBDCDABD=CD=
8 undisj1 ABD=CD=ABCD=
9 7 8 sylib ADBDCDABCD=
10 2 9 eqtrid ADBDCDABCD=