Metamath Proof Explorer


Theorem disjtp2

Description: Two completely distinct unordered triples are disjoint. (Contributed by AV, 14-Nov-2021)

Ref Expression
Assertion disjtp2 A D B D C D A E B E C E A F B F C F A B C D E F =

Proof

Step Hyp Ref Expression
1 df-tp D E F = D E F
2 1 ineq2i A B C D E F = A B C D E F
3 df-tp A B C = A B C
4 3 ineq1i A B C D E = A B C D E
5 3simpa A D B D C D A D B D
6 3simpa A E B E C E A E B E
7 disjpr2 A D B D A E B E A B D E =
8 5 6 7 syl2an A D B D C D A E B E C E A B D E =
9 8 3adant3 A D B D C D A E B E C E A F B F C F A B D E =
10 incom C D E = D E C
11 necom C D D C
12 11 biimpi C D D C
13 12 3ad2ant3 A D B D C D D C
14 necom C E E C
15 14 biimpi C E E C
16 15 3ad2ant3 A E B E C E E C
17 disjprsn D C E C D E C =
18 13 16 17 syl2an A D B D C D A E B E C E D E C =
19 18 3adant3 A D B D C D A E B E C E A F B F C F D E C =
20 10 19 syl5eq A D B D C D A E B E C E A F B F C F C D E =
21 9 20 jca A D B D C D A E B E C E A F B F C F A B D E = C D E =
22 undisj1 A B D E = C D E = A B C D E =
23 21 22 sylib A D B D C D A E B E C E A F B F C F A B C D E =
24 4 23 syl5eq A D B D C D A E B E C E A F B F C F A B C D E =
25 disjtpsn A F B F C F A B C F =
26 25 3ad2ant3 A D B D C D A E B E C E A F B F C F A B C F =
27 24 26 jca A D B D C D A E B E C E A F B F C F A B C D E = A B C F =
28 undisj2 A B C D E = A B C F = A B C D E F =
29 27 28 sylib A D B D C D A E B E C E A F B F C F A B C D E F =
30 2 29 syl5eq A D B D C D A E B E C E A F B F C F A B C D E F =