Metamath Proof Explorer


Theorem disjpr2

Description: Two completely distinct unordered pairs are disjoint. (Contributed by Alexander van der Vekens, 11-Nov-2017) (Proof shortened by JJ, 23-Jul-2021)

Ref Expression
Assertion disjpr2 ACBCADBDABCD=

Proof

Step Hyp Ref Expression
1 df-pr CD=CD
2 1 ineq2i ABCD=ABCD
3 indi ABCD=ABCABD
4 2 3 eqtri ABCD=ABCABD
5 df-pr AB=AB
6 5 ineq1i ABC=ABC
7 indir ABC=ACBC
8 6 7 eqtri ABC=ACBC
9 disjsn2 ACAC=
10 disjsn2 BCBC=
11 9 10 anim12i ACBCAC=BC=
12 un00 AC=BC=ACBC=
13 11 12 sylib ACBCACBC=
14 8 13 eqtrid ACBCABC=
15 14 adantr ACBCADBDABC=
16 5 ineq1i ABD=ABD
17 indir ABD=ADBD
18 16 17 eqtri ABD=ADBD
19 disjsn2 ADAD=
20 disjsn2 BDBD=
21 19 20 anim12i ADBDAD=BD=
22 un00 AD=BD=ADBD=
23 21 22 sylib ADBDADBD=
24 18 23 eqtrid ADBDABD=
25 24 adantl ACBCADBDABD=
26 15 25 uneq12d ACBCADBDABCABD=
27 un0 =
28 26 27 eqtrdi ACBCADBDABCABD=
29 4 28 eqtrid ACBCADBDABCD=