Description: Two completely distinct unordered pairs are disjoint. (Contributed by Alexander van der Vekens, 11-Nov-2017) (Proof shortened by JJ, 23-Jul-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | disjpr2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pr | |
|
2 | 1 | ineq2i | |
3 | indi | |
|
4 | 2 3 | eqtri | |
5 | df-pr | |
|
6 | 5 | ineq1i | |
7 | indir | |
|
8 | 6 7 | eqtri | |
9 | disjsn2 | |
|
10 | disjsn2 | |
|
11 | 9 10 | anim12i | |
12 | un00 | |
|
13 | 11 12 | sylib | |
14 | 8 13 | eqtrid | |
15 | 14 | adantr | |
16 | 5 | ineq1i | |
17 | indir | |
|
18 | 16 17 | eqtri | |
19 | disjsn2 | |
|
20 | disjsn2 | |
|
21 | 19 20 | anim12i | |
22 | un00 | |
|
23 | 21 22 | sylib | |
24 | 18 23 | eqtrid | |
25 | 24 | adantl | |
26 | 15 25 | uneq12d | |
27 | un0 | |
|
28 | 26 27 | eqtrdi | |
29 | 4 28 | eqtrid | |