Metamath Proof Explorer


Definition df-cj

Description: Define the complex conjugate function. See cjcli for its closure and cjval for its value. (Contributed by NM, 9-May-1999) (Revised by Mario Carneiro, 6-Nov-2013)

Ref Expression
Assertion df-cj *=xιy|x+yixy

Detailed syntax breakdown

Step Hyp Ref Expression
0 ccj class*
1 vx setvarx
2 cc class
3 vy setvary
4 1 cv setvarx
5 caddc class+
6 3 cv setvary
7 4 6 5 co classx+y
8 cr class
9 7 8 wcel wffx+y
10 ci classi
11 cmul class×
12 cmin class
13 4 6 12 co classxy
14 10 13 11 co classixy
15 14 8 wcel wffixy
16 9 15 wa wffx+yixy
17 16 3 2 crio classιy|x+yixy
18 1 2 17 cmpt classxιy|x+yixy
19 0 18 wceq wff*=xιy|x+yixy