Metamath Proof Explorer


Theorem opnzi

Description: An ordered pair is nonempty if the arguments are sets. (Contributed by Mario Carneiro, 26-Apr-2015)

Ref Expression
Hypotheses opth1.1 AV
opth1.2 BV
Assertion opnzi AB

Proof

Step Hyp Ref Expression
1 opth1.1 AV
2 opth1.2 BV
3 opnz ABAVBV
4 1 2 3 mpbir2an AB