Metamath Proof Explorer


Theorem opnz

Description: An ordered pair is nonempty iff the arguments are sets. (Contributed by NM, 24-Jan-2004) (Revised by Mario Carneiro, 26-Apr-2015)

Ref Expression
Assertion opnz A B A V B V

Proof

Step Hyp Ref Expression
1 opprc ¬ A V B V A B =
2 1 necon1ai A B A V B V
3 dfopg A V B V A B = A A B
4 snex A V
5 4 prnz A A B
6 5 a1i A V B V A A B
7 3 6 eqnetrd A V B V A B
8 2 7 impbii A B A V B V