Metamath Proof Explorer


Theorem opnzi

Description: An ordered pair is nonempty if the arguments are sets. (Contributed by Mario Carneiro, 26-Apr-2015)

Ref Expression
Hypotheses opth1.1 𝐴 ∈ V
opth1.2 𝐵 ∈ V
Assertion opnzi 𝐴 , 𝐵 ⟩ ≠ ∅

Proof

Step Hyp Ref Expression
1 opth1.1 𝐴 ∈ V
2 opth1.2 𝐵 ∈ V
3 opnz ( ⟨ 𝐴 , 𝐵 ⟩ ≠ ∅ ↔ ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) )
4 1 2 3 mpbir2an 𝐴 , 𝐵 ⟩ ≠ ∅