Metamath Proof Explorer


Theorem cnfldstr

Description: The field of complex numbers is a structure. (Contributed by Mario Carneiro, 14-Aug-2015) (Revised by Thierry Arnoux, 17-Dec-2017)

Ref Expression
Assertion cnfldstr fldStruct113

Proof

Step Hyp Ref Expression
1 df-cnfld fld=Basendx+ndx+ndx×*ndx*TopSetndxMetOpenabsndxdistndxabsUnifSetndxmetUnifabs
2 eqid Basendx+ndx+ndx×*ndx*=Basendx+ndx+ndx×*ndx*
3 2 srngstr Basendx+ndx+ndx×*ndx*Struct14
4 9nn 9
5 tsetndx TopSetndx=9
6 9lt10 9<10
7 10nn 10
8 plendx ndx=10
9 1nn0 10
10 0nn0 00
11 2nn 2
12 2pos 0<2
13 9 10 11 12 declt 10<12
14 9 11 decnncl 12
15 dsndx distndx=12
16 4 5 6 7 8 13 14 15 strle3 TopSetndxMetOpenabsndxdistndxabsStruct912
17 3nn 3
18 9 17 decnncl 13
19 unifndx UnifSetndx=13
20 18 19 strle1 UnifSetndxmetUnifabsStruct1313
21 2nn0 20
22 2lt3 2<3
23 9 21 17 22 declt 12<13
24 16 20 23 strleun TopSetndxMetOpenabsndxdistndxabsUnifSetndxmetUnifabsStruct913
25 4lt9 4<9
26 3 24 25 strleun Basendx+ndx+ndx×*ndx*TopSetndxMetOpenabsndxdistndxabsUnifSetndxmetUnifabsStruct113
27 1 26 eqbrtri fldStruct113