Metamath Proof Explorer


Theorem strle1

Description: Make a structure from a singleton. (Contributed by Mario Carneiro, 29-Aug-2015)

Ref Expression
Hypotheses strle1.i I
strle1.a A=I
Assertion strle1 AXStructII

Proof

Step Hyp Ref Expression
1 strle1.i I
2 strle1.a A=I
3 1 nnrei I
4 3 leidi II
5 1 1 4 3pm3.2i IIII
6 difss AXAX
7 2 1 eqeltri A
8 funsng AXVFunAX
9 7 8 mpan XVFunAX
10 funss AXAXFunAXFunAX
11 6 9 10 mpsyl XVFunAX
12 fun0 Fun
13 opprc2 ¬XVAX=
14 13 sneqd ¬XVAX=
15 14 difeq1d ¬XVAX=
16 difid =
17 15 16 eqtrdi ¬XVAX=
18 17 funeqd ¬XVFunAXFun
19 12 18 mpbiri ¬XVFunAX
20 11 19 pm2.61i FunAX
21 dmsnopss domAXA
22 2 sneqi A=I
23 1 nnzi I
24 fzsn III=I
25 23 24 ax-mp II=I
26 22 25 eqtr4i A=II
27 21 26 sseqtri domAXII
28 isstruct AXStructIIIIIIFunAXdomAXII
29 5 20 27 28 mpbir3an AXStructII