| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							strle1.i | 
							 |-  I e. NN  | 
						
						
							| 2 | 
							
								
							 | 
							strle1.a | 
							 |-  A = I  | 
						
						
							| 3 | 
							
								1
							 | 
							nnrei | 
							 |-  I e. RR  | 
						
						
							| 4 | 
							
								3
							 | 
							leidi | 
							 |-  I <_ I  | 
						
						
							| 5 | 
							
								1 1 4
							 | 
							3pm3.2i | 
							 |-  ( I e. NN /\ I e. NN /\ I <_ I )  | 
						
						
							| 6 | 
							
								
							 | 
							difss | 
							 |-  ( { <. A , X >. } \ { (/) } ) C_ { <. A , X >. } | 
						
						
							| 7 | 
							
								2 1
							 | 
							eqeltri | 
							 |-  A e. NN  | 
						
						
							| 8 | 
							
								
							 | 
							funsng | 
							 |-  ( ( A e. NN /\ X e. _V ) -> Fun { <. A , X >. } ) | 
						
						
							| 9 | 
							
								7 8
							 | 
							mpan | 
							 |-  ( X e. _V -> Fun { <. A , X >. } ) | 
						
						
							| 10 | 
							
								
							 | 
							funss | 
							 |-  ( ( { <. A , X >. } \ { (/) } ) C_ { <. A , X >. } -> ( Fun { <. A , X >. } -> Fun ( { <. A , X >. } \ { (/) } ) ) ) | 
						
						
							| 11 | 
							
								6 9 10
							 | 
							mpsyl | 
							 |-  ( X e. _V -> Fun ( { <. A , X >. } \ { (/) } ) ) | 
						
						
							| 12 | 
							
								
							 | 
							fun0 | 
							 |-  Fun (/)  | 
						
						
							| 13 | 
							
								
							 | 
							opprc2 | 
							 |-  ( -. X e. _V -> <. A , X >. = (/) )  | 
						
						
							| 14 | 
							
								13
							 | 
							sneqd | 
							 |-  ( -. X e. _V -> { <. A , X >. } = { (/) } ) | 
						
						
							| 15 | 
							
								14
							 | 
							difeq1d | 
							 |-  ( -. X e. _V -> ( { <. A , X >. } \ { (/) } ) = ( { (/) } \ { (/) } ) ) | 
						
						
							| 16 | 
							
								
							 | 
							difid | 
							 |-  ( { (/) } \ { (/) } ) = (/) | 
						
						
							| 17 | 
							
								15 16
							 | 
							eqtrdi | 
							 |-  ( -. X e. _V -> ( { <. A , X >. } \ { (/) } ) = (/) ) | 
						
						
							| 18 | 
							
								17
							 | 
							funeqd | 
							 |-  ( -. X e. _V -> ( Fun ( { <. A , X >. } \ { (/) } ) <-> Fun (/) ) ) | 
						
						
							| 19 | 
							
								12 18
							 | 
							mpbiri | 
							 |-  ( -. X e. _V -> Fun ( { <. A , X >. } \ { (/) } ) ) | 
						
						
							| 20 | 
							
								11 19
							 | 
							pm2.61i | 
							 |-  Fun ( { <. A , X >. } \ { (/) } ) | 
						
						
							| 21 | 
							
								
							 | 
							dmsnopss | 
							 |-  dom { <. A , X >. } C_ { A } | 
						
						
							| 22 | 
							
								2
							 | 
							sneqi | 
							 |-  { A } = { I } | 
						
						
							| 23 | 
							
								1
							 | 
							nnzi | 
							 |-  I e. ZZ  | 
						
						
							| 24 | 
							
								
							 | 
							fzsn | 
							 |-  ( I e. ZZ -> ( I ... I ) = { I } ) | 
						
						
							| 25 | 
							
								23 24
							 | 
							ax-mp | 
							 |-  ( I ... I ) = { I } | 
						
						
							| 26 | 
							
								22 25
							 | 
							eqtr4i | 
							 |-  { A } = ( I ... I ) | 
						
						
							| 27 | 
							
								21 26
							 | 
							sseqtri | 
							 |-  dom { <. A , X >. } C_ ( I ... I ) | 
						
						
							| 28 | 
							
								
							 | 
							isstruct | 
							 |-  ( { <. A , X >. } Struct <. I , I >. <-> ( ( I e. NN /\ I e. NN /\ I <_ I ) /\ Fun ( { <. A , X >. } \ { (/) } ) /\ dom { <. A , X >. } C_ ( I ... I ) ) ) | 
						
						
							| 29 | 
							
								5 20 27 28
							 | 
							mpbir3an | 
							 |-  { <. A , X >. } Struct <. I , I >. |