Metamath Proof Explorer


Theorem structn0fun

Description: A structure without the empty set is a function. (Contributed by AV, 13-Nov-2021)

Ref Expression
Assertion structn0fun FStructXFunF

Proof

Step Hyp Ref Expression
1 isstruct2 FStructXX×FunFdomFX
2 1 simp2bi FStructXFunF