Step |
Hyp |
Ref |
Expression |
1 |
|
srapart.a |
|- ( ph -> A = ( ( subringAlg ` W ) ` S ) ) |
2 |
|
srapart.s |
|- ( ph -> S C_ ( Base ` W ) ) |
3 |
|
sralem.1 |
|- E = Slot ( E ` ndx ) |
4 |
|
sralem.2 |
|- ( Scalar ` ndx ) =/= ( E ` ndx ) |
5 |
|
sralem.3 |
|- ( .s ` ndx ) =/= ( E ` ndx ) |
6 |
|
sralem.4 |
|- ( .i ` ndx ) =/= ( E ` ndx ) |
7 |
4
|
necomi |
|- ( E ` ndx ) =/= ( Scalar ` ndx ) |
8 |
3 7
|
setsnid |
|- ( E ` W ) = ( E ` ( W sSet <. ( Scalar ` ndx ) , ( W |`s S ) >. ) ) |
9 |
5
|
necomi |
|- ( E ` ndx ) =/= ( .s ` ndx ) |
10 |
3 9
|
setsnid |
|- ( E ` ( W sSet <. ( Scalar ` ndx ) , ( W |`s S ) >. ) ) = ( E ` ( ( W sSet <. ( Scalar ` ndx ) , ( W |`s S ) >. ) sSet <. ( .s ` ndx ) , ( .r ` W ) >. ) ) |
11 |
6
|
necomi |
|- ( E ` ndx ) =/= ( .i ` ndx ) |
12 |
3 11
|
setsnid |
|- ( E ` ( ( W sSet <. ( Scalar ` ndx ) , ( W |`s S ) >. ) sSet <. ( .s ` ndx ) , ( .r ` W ) >. ) ) = ( E ` ( ( ( W sSet <. ( Scalar ` ndx ) , ( W |`s S ) >. ) sSet <. ( .s ` ndx ) , ( .r ` W ) >. ) sSet <. ( .i ` ndx ) , ( .r ` W ) >. ) ) |
13 |
8 10 12
|
3eqtri |
|- ( E ` W ) = ( E ` ( ( ( W sSet <. ( Scalar ` ndx ) , ( W |`s S ) >. ) sSet <. ( .s ` ndx ) , ( .r ` W ) >. ) sSet <. ( .i ` ndx ) , ( .r ` W ) >. ) ) |
14 |
1
|
adantl |
|- ( ( W e. _V /\ ph ) -> A = ( ( subringAlg ` W ) ` S ) ) |
15 |
|
sraval |
|- ( ( W e. _V /\ S C_ ( Base ` W ) ) -> ( ( subringAlg ` W ) ` S ) = ( ( ( W sSet <. ( Scalar ` ndx ) , ( W |`s S ) >. ) sSet <. ( .s ` ndx ) , ( .r ` W ) >. ) sSet <. ( .i ` ndx ) , ( .r ` W ) >. ) ) |
16 |
2 15
|
sylan2 |
|- ( ( W e. _V /\ ph ) -> ( ( subringAlg ` W ) ` S ) = ( ( ( W sSet <. ( Scalar ` ndx ) , ( W |`s S ) >. ) sSet <. ( .s ` ndx ) , ( .r ` W ) >. ) sSet <. ( .i ` ndx ) , ( .r ` W ) >. ) ) |
17 |
14 16
|
eqtrd |
|- ( ( W e. _V /\ ph ) -> A = ( ( ( W sSet <. ( Scalar ` ndx ) , ( W |`s S ) >. ) sSet <. ( .s ` ndx ) , ( .r ` W ) >. ) sSet <. ( .i ` ndx ) , ( .r ` W ) >. ) ) |
18 |
17
|
fveq2d |
|- ( ( W e. _V /\ ph ) -> ( E ` A ) = ( E ` ( ( ( W sSet <. ( Scalar ` ndx ) , ( W |`s S ) >. ) sSet <. ( .s ` ndx ) , ( .r ` W ) >. ) sSet <. ( .i ` ndx ) , ( .r ` W ) >. ) ) ) |
19 |
13 18
|
eqtr4id |
|- ( ( W e. _V /\ ph ) -> ( E ` W ) = ( E ` A ) ) |
20 |
3
|
str0 |
|- (/) = ( E ` (/) ) |
21 |
|
fvprc |
|- ( -. W e. _V -> ( E ` W ) = (/) ) |
22 |
21
|
adantr |
|- ( ( -. W e. _V /\ ph ) -> ( E ` W ) = (/) ) |
23 |
|
fv2prc |
|- ( -. W e. _V -> ( ( subringAlg ` W ) ` S ) = (/) ) |
24 |
1 23
|
sylan9eqr |
|- ( ( -. W e. _V /\ ph ) -> A = (/) ) |
25 |
24
|
fveq2d |
|- ( ( -. W e. _V /\ ph ) -> ( E ` A ) = ( E ` (/) ) ) |
26 |
20 22 25
|
3eqtr4a |
|- ( ( -. W e. _V /\ ph ) -> ( E ` W ) = ( E ` A ) ) |
27 |
19 26
|
pm2.61ian |
|- ( ph -> ( E ` W ) = ( E ` A ) ) |