Metamath Proof Explorer


Theorem slotsdnscsi

Description: The slots Scalar , .s and .i are different from the slot dist . Formerly part of sralem and proofs using it. (Contributed by AV, 29-Oct-2024)

Ref Expression
Assertion slotsdnscsi ( ( dist ‘ ndx ) ≠ ( Scalar ‘ ndx ) ∧ ( dist ‘ ndx ) ≠ ( ·𝑠 ‘ ndx ) ∧ ( dist ‘ ndx ) ≠ ( ·𝑖 ‘ ndx ) )

Proof

Step Hyp Ref Expression
1 5re 5 ∈ ℝ
2 1nn 1 ∈ ℕ
3 2nn0 2 ∈ ℕ0
4 5nn0 5 ∈ ℕ0
5 5lt10 5 < 1 0
6 2 3 4 5 declti 5 < 1 2
7 1 6 gtneii 1 2 ≠ 5
8 dsndx ( dist ‘ ndx ) = 1 2
9 scandx ( Scalar ‘ ndx ) = 5
10 8 9 neeq12i ( ( dist ‘ ndx ) ≠ ( Scalar ‘ ndx ) ↔ 1 2 ≠ 5 )
11 7 10 mpbir ( dist ‘ ndx ) ≠ ( Scalar ‘ ndx )
12 6re 6 ∈ ℝ
13 6nn0 6 ∈ ℕ0
14 6lt10 6 < 1 0
15 2 3 13 14 declti 6 < 1 2
16 12 15 gtneii 1 2 ≠ 6
17 vscandx ( ·𝑠 ‘ ndx ) = 6
18 8 17 neeq12i ( ( dist ‘ ndx ) ≠ ( ·𝑠 ‘ ndx ) ↔ 1 2 ≠ 6 )
19 16 18 mpbir ( dist ‘ ndx ) ≠ ( ·𝑠 ‘ ndx )
20 8re 8 ∈ ℝ
21 8nn0 8 ∈ ℕ0
22 8lt10 8 < 1 0
23 2 3 21 22 declti 8 < 1 2
24 20 23 gtneii 1 2 ≠ 8
25 ipndx ( ·𝑖 ‘ ndx ) = 8
26 8 25 neeq12i ( ( dist ‘ ndx ) ≠ ( ·𝑖 ‘ ndx ) ↔ 1 2 ≠ 8 )
27 24 26 mpbir ( dist ‘ ndx ) ≠ ( ·𝑖 ‘ ndx )
28 11 19 27 3pm3.2i ( ( dist ‘ ndx ) ≠ ( Scalar ‘ ndx ) ∧ ( dist ‘ ndx ) ≠ ( ·𝑠 ‘ ndx ) ∧ ( dist ‘ ndx ) ≠ ( ·𝑖 ‘ ndx ) )