Description: The slots Scalar , .s and .i are different from the slot dist . Formerly part of sralem and proofs using it. (Contributed by AV, 29-Oct-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | slotsdnscsi | ⊢ ( ( dist ‘ ndx ) ≠ ( Scalar ‘ ndx ) ∧ ( dist ‘ ndx ) ≠ ( ·𝑠 ‘ ndx ) ∧ ( dist ‘ ndx ) ≠ ( ·𝑖 ‘ ndx ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 5re | ⊢ 5 ∈ ℝ | |
2 | 1nn | ⊢ 1 ∈ ℕ | |
3 | 2nn0 | ⊢ 2 ∈ ℕ0 | |
4 | 5nn0 | ⊢ 5 ∈ ℕ0 | |
5 | 5lt10 | ⊢ 5 < ; 1 0 | |
6 | 2 3 4 5 | declti | ⊢ 5 < ; 1 2 |
7 | 1 6 | gtneii | ⊢ ; 1 2 ≠ 5 |
8 | dsndx | ⊢ ( dist ‘ ndx ) = ; 1 2 | |
9 | scandx | ⊢ ( Scalar ‘ ndx ) = 5 | |
10 | 8 9 | neeq12i | ⊢ ( ( dist ‘ ndx ) ≠ ( Scalar ‘ ndx ) ↔ ; 1 2 ≠ 5 ) |
11 | 7 10 | mpbir | ⊢ ( dist ‘ ndx ) ≠ ( Scalar ‘ ndx ) |
12 | 6re | ⊢ 6 ∈ ℝ | |
13 | 6nn0 | ⊢ 6 ∈ ℕ0 | |
14 | 6lt10 | ⊢ 6 < ; 1 0 | |
15 | 2 3 13 14 | declti | ⊢ 6 < ; 1 2 |
16 | 12 15 | gtneii | ⊢ ; 1 2 ≠ 6 |
17 | vscandx | ⊢ ( ·𝑠 ‘ ndx ) = 6 | |
18 | 8 17 | neeq12i | ⊢ ( ( dist ‘ ndx ) ≠ ( ·𝑠 ‘ ndx ) ↔ ; 1 2 ≠ 6 ) |
19 | 16 18 | mpbir | ⊢ ( dist ‘ ndx ) ≠ ( ·𝑠 ‘ ndx ) |
20 | 8re | ⊢ 8 ∈ ℝ | |
21 | 8nn0 | ⊢ 8 ∈ ℕ0 | |
22 | 8lt10 | ⊢ 8 < ; 1 0 | |
23 | 2 3 21 22 | declti | ⊢ 8 < ; 1 2 |
24 | 20 23 | gtneii | ⊢ ; 1 2 ≠ 8 |
25 | ipndx | ⊢ ( ·𝑖 ‘ ndx ) = 8 | |
26 | 8 25 | neeq12i | ⊢ ( ( dist ‘ ndx ) ≠ ( ·𝑖 ‘ ndx ) ↔ ; 1 2 ≠ 8 ) |
27 | 24 26 | mpbir | ⊢ ( dist ‘ ndx ) ≠ ( ·𝑖 ‘ ndx ) |
28 | 11 19 27 | 3pm3.2i | ⊢ ( ( dist ‘ ndx ) ≠ ( Scalar ‘ ndx ) ∧ ( dist ‘ ndx ) ≠ ( ·𝑠 ‘ ndx ) ∧ ( dist ‘ ndx ) ≠ ( ·𝑖 ‘ ndx ) ) |