Metamath Proof Explorer


Theorem tngmulr

Description: The ring multiplication of a structure augmented with a norm. (Contributed by Mario Carneiro, 2-Oct-2015) (Revised by AV, 31-Oct-2024)

Ref Expression
Hypotheses tngbas.t T = G toNrmGrp N
tngmulr.2 · ˙ = G
Assertion tngmulr N V · ˙ = T

Proof

Step Hyp Ref Expression
1 tngbas.t T = G toNrmGrp N
2 tngmulr.2 · ˙ = G
3 mulrid 𝑟 = Slot ndx
4 tsetndxnmulrndx TopSet ndx ndx
5 4 necomi ndx TopSet ndx
6 dsndxnmulrndx dist ndx ndx
7 6 necomi ndx dist ndx
8 1 3 5 7 tnglem N V G = T
9 2 8 syl5eq N V · ˙ = T