Metamath Proof Explorer


Theorem tngmulr

Description: The ring multiplication of a structure augmented with a norm. (Contributed by Mario Carneiro, 2-Oct-2015) (Revised by AV, 31-Oct-2024)

Ref Expression
Hypotheses tngbas.t T=GtoNrmGrpN
tngmulr.2 ·˙=G
Assertion tngmulr NV·˙=T

Proof

Step Hyp Ref Expression
1 tngbas.t T=GtoNrmGrpN
2 tngmulr.2 ·˙=G
3 mulridx 𝑟=Slotndx
4 tsetndxnmulrndx TopSetndxndx
5 4 necomi ndxTopSetndx
6 dsndxnmulrndx distndxndx
7 6 necomi ndxdistndx
8 1 3 5 7 tnglem NVG=T
9 2 8 eqtrid NV·˙=T