| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isnlm.v |
|- V = ( Base ` W ) |
| 2 |
|
isnlm.n |
|- N = ( norm ` W ) |
| 3 |
|
isnlm.s |
|- .x. = ( .s ` W ) |
| 4 |
|
isnlm.f |
|- F = ( Scalar ` W ) |
| 5 |
|
isnlm.k |
|- K = ( Base ` F ) |
| 6 |
|
isnlm.a |
|- A = ( norm ` F ) |
| 7 |
|
anass |
|- ( ( ( W e. ( NrmGrp i^i LMod ) /\ F e. NrmRing ) /\ A. x e. K A. y e. V ( N ` ( x .x. y ) ) = ( ( A ` x ) x. ( N ` y ) ) ) <-> ( W e. ( NrmGrp i^i LMod ) /\ ( F e. NrmRing /\ A. x e. K A. y e. V ( N ` ( x .x. y ) ) = ( ( A ` x ) x. ( N ` y ) ) ) ) ) |
| 8 |
|
df-3an |
|- ( ( W e. NrmGrp /\ W e. LMod /\ F e. NrmRing ) <-> ( ( W e. NrmGrp /\ W e. LMod ) /\ F e. NrmRing ) ) |
| 9 |
|
elin |
|- ( W e. ( NrmGrp i^i LMod ) <-> ( W e. NrmGrp /\ W e. LMod ) ) |
| 10 |
9
|
anbi1i |
|- ( ( W e. ( NrmGrp i^i LMod ) /\ F e. NrmRing ) <-> ( ( W e. NrmGrp /\ W e. LMod ) /\ F e. NrmRing ) ) |
| 11 |
8 10
|
bitr4i |
|- ( ( W e. NrmGrp /\ W e. LMod /\ F e. NrmRing ) <-> ( W e. ( NrmGrp i^i LMod ) /\ F e. NrmRing ) ) |
| 12 |
11
|
anbi1i |
|- ( ( ( W e. NrmGrp /\ W e. LMod /\ F e. NrmRing ) /\ A. x e. K A. y e. V ( N ` ( x .x. y ) ) = ( ( A ` x ) x. ( N ` y ) ) ) <-> ( ( W e. ( NrmGrp i^i LMod ) /\ F e. NrmRing ) /\ A. x e. K A. y e. V ( N ` ( x .x. y ) ) = ( ( A ` x ) x. ( N ` y ) ) ) ) |
| 13 |
|
fvexd |
|- ( w = W -> ( Scalar ` w ) e. _V ) |
| 14 |
|
id |
|- ( f = ( Scalar ` w ) -> f = ( Scalar ` w ) ) |
| 15 |
|
fveq2 |
|- ( w = W -> ( Scalar ` w ) = ( Scalar ` W ) ) |
| 16 |
15 4
|
eqtr4di |
|- ( w = W -> ( Scalar ` w ) = F ) |
| 17 |
14 16
|
sylan9eqr |
|- ( ( w = W /\ f = ( Scalar ` w ) ) -> f = F ) |
| 18 |
17
|
eleq1d |
|- ( ( w = W /\ f = ( Scalar ` w ) ) -> ( f e. NrmRing <-> F e. NrmRing ) ) |
| 19 |
17
|
fveq2d |
|- ( ( w = W /\ f = ( Scalar ` w ) ) -> ( Base ` f ) = ( Base ` F ) ) |
| 20 |
19 5
|
eqtr4di |
|- ( ( w = W /\ f = ( Scalar ` w ) ) -> ( Base ` f ) = K ) |
| 21 |
|
simpl |
|- ( ( w = W /\ f = ( Scalar ` w ) ) -> w = W ) |
| 22 |
21
|
fveq2d |
|- ( ( w = W /\ f = ( Scalar ` w ) ) -> ( Base ` w ) = ( Base ` W ) ) |
| 23 |
22 1
|
eqtr4di |
|- ( ( w = W /\ f = ( Scalar ` w ) ) -> ( Base ` w ) = V ) |
| 24 |
21
|
fveq2d |
|- ( ( w = W /\ f = ( Scalar ` w ) ) -> ( norm ` w ) = ( norm ` W ) ) |
| 25 |
24 2
|
eqtr4di |
|- ( ( w = W /\ f = ( Scalar ` w ) ) -> ( norm ` w ) = N ) |
| 26 |
21
|
fveq2d |
|- ( ( w = W /\ f = ( Scalar ` w ) ) -> ( .s ` w ) = ( .s ` W ) ) |
| 27 |
26 3
|
eqtr4di |
|- ( ( w = W /\ f = ( Scalar ` w ) ) -> ( .s ` w ) = .x. ) |
| 28 |
27
|
oveqd |
|- ( ( w = W /\ f = ( Scalar ` w ) ) -> ( x ( .s ` w ) y ) = ( x .x. y ) ) |
| 29 |
25 28
|
fveq12d |
|- ( ( w = W /\ f = ( Scalar ` w ) ) -> ( ( norm ` w ) ` ( x ( .s ` w ) y ) ) = ( N ` ( x .x. y ) ) ) |
| 30 |
17
|
fveq2d |
|- ( ( w = W /\ f = ( Scalar ` w ) ) -> ( norm ` f ) = ( norm ` F ) ) |
| 31 |
30 6
|
eqtr4di |
|- ( ( w = W /\ f = ( Scalar ` w ) ) -> ( norm ` f ) = A ) |
| 32 |
31
|
fveq1d |
|- ( ( w = W /\ f = ( Scalar ` w ) ) -> ( ( norm ` f ) ` x ) = ( A ` x ) ) |
| 33 |
25
|
fveq1d |
|- ( ( w = W /\ f = ( Scalar ` w ) ) -> ( ( norm ` w ) ` y ) = ( N ` y ) ) |
| 34 |
32 33
|
oveq12d |
|- ( ( w = W /\ f = ( Scalar ` w ) ) -> ( ( ( norm ` f ) ` x ) x. ( ( norm ` w ) ` y ) ) = ( ( A ` x ) x. ( N ` y ) ) ) |
| 35 |
29 34
|
eqeq12d |
|- ( ( w = W /\ f = ( Scalar ` w ) ) -> ( ( ( norm ` w ) ` ( x ( .s ` w ) y ) ) = ( ( ( norm ` f ) ` x ) x. ( ( norm ` w ) ` y ) ) <-> ( N ` ( x .x. y ) ) = ( ( A ` x ) x. ( N ` y ) ) ) ) |
| 36 |
23 35
|
raleqbidv |
|- ( ( w = W /\ f = ( Scalar ` w ) ) -> ( A. y e. ( Base ` w ) ( ( norm ` w ) ` ( x ( .s ` w ) y ) ) = ( ( ( norm ` f ) ` x ) x. ( ( norm ` w ) ` y ) ) <-> A. y e. V ( N ` ( x .x. y ) ) = ( ( A ` x ) x. ( N ` y ) ) ) ) |
| 37 |
20 36
|
raleqbidv |
|- ( ( w = W /\ f = ( Scalar ` w ) ) -> ( A. x e. ( Base ` f ) A. y e. ( Base ` w ) ( ( norm ` w ) ` ( x ( .s ` w ) y ) ) = ( ( ( norm ` f ) ` x ) x. ( ( norm ` w ) ` y ) ) <-> A. x e. K A. y e. V ( N ` ( x .x. y ) ) = ( ( A ` x ) x. ( N ` y ) ) ) ) |
| 38 |
18 37
|
anbi12d |
|- ( ( w = W /\ f = ( Scalar ` w ) ) -> ( ( f e. NrmRing /\ A. x e. ( Base ` f ) A. y e. ( Base ` w ) ( ( norm ` w ) ` ( x ( .s ` w ) y ) ) = ( ( ( norm ` f ) ` x ) x. ( ( norm ` w ) ` y ) ) ) <-> ( F e. NrmRing /\ A. x e. K A. y e. V ( N ` ( x .x. y ) ) = ( ( A ` x ) x. ( N ` y ) ) ) ) ) |
| 39 |
13 38
|
sbcied |
|- ( w = W -> ( [. ( Scalar ` w ) / f ]. ( f e. NrmRing /\ A. x e. ( Base ` f ) A. y e. ( Base ` w ) ( ( norm ` w ) ` ( x ( .s ` w ) y ) ) = ( ( ( norm ` f ) ` x ) x. ( ( norm ` w ) ` y ) ) ) <-> ( F e. NrmRing /\ A. x e. K A. y e. V ( N ` ( x .x. y ) ) = ( ( A ` x ) x. ( N ` y ) ) ) ) ) |
| 40 |
|
df-nlm |
|- NrmMod = { w e. ( NrmGrp i^i LMod ) | [. ( Scalar ` w ) / f ]. ( f e. NrmRing /\ A. x e. ( Base ` f ) A. y e. ( Base ` w ) ( ( norm ` w ) ` ( x ( .s ` w ) y ) ) = ( ( ( norm ` f ) ` x ) x. ( ( norm ` w ) ` y ) ) ) } |
| 41 |
39 40
|
elrab2 |
|- ( W e. NrmMod <-> ( W e. ( NrmGrp i^i LMod ) /\ ( F e. NrmRing /\ A. x e. K A. y e. V ( N ` ( x .x. y ) ) = ( ( A ` x ) x. ( N ` y ) ) ) ) ) |
| 42 |
7 12 41
|
3bitr4ri |
|- ( W e. NrmMod <-> ( ( W e. NrmGrp /\ W e. LMod /\ F e. NrmRing ) /\ A. x e. K A. y e. V ( N ` ( x .x. y ) ) = ( ( A ` x ) x. ( N ` y ) ) ) ) |