| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isnlm.v |
|- V = ( Base ` W ) |
| 2 |
|
isnlm.n |
|- N = ( norm ` W ) |
| 3 |
|
isnlm.s |
|- .x. = ( .s ` W ) |
| 4 |
|
isnlm.f |
|- F = ( Scalar ` W ) |
| 5 |
|
isnlm.k |
|- K = ( Base ` F ) |
| 6 |
|
isnlm.a |
|- A = ( norm ` F ) |
| 7 |
1 2 3 4 5 6
|
isnlm |
|- ( W e. NrmMod <-> ( ( W e. NrmGrp /\ W e. LMod /\ F e. NrmRing ) /\ A. x e. K A. y e. V ( N ` ( x .x. y ) ) = ( ( A ` x ) x. ( N ` y ) ) ) ) |
| 8 |
7
|
simprbi |
|- ( W e. NrmMod -> A. x e. K A. y e. V ( N ` ( x .x. y ) ) = ( ( A ` x ) x. ( N ` y ) ) ) |
| 9 |
|
fvoveq1 |
|- ( x = X -> ( N ` ( x .x. y ) ) = ( N ` ( X .x. y ) ) ) |
| 10 |
|
fveq2 |
|- ( x = X -> ( A ` x ) = ( A ` X ) ) |
| 11 |
10
|
oveq1d |
|- ( x = X -> ( ( A ` x ) x. ( N ` y ) ) = ( ( A ` X ) x. ( N ` y ) ) ) |
| 12 |
9 11
|
eqeq12d |
|- ( x = X -> ( ( N ` ( x .x. y ) ) = ( ( A ` x ) x. ( N ` y ) ) <-> ( N ` ( X .x. y ) ) = ( ( A ` X ) x. ( N ` y ) ) ) ) |
| 13 |
|
oveq2 |
|- ( y = Y -> ( X .x. y ) = ( X .x. Y ) ) |
| 14 |
13
|
fveq2d |
|- ( y = Y -> ( N ` ( X .x. y ) ) = ( N ` ( X .x. Y ) ) ) |
| 15 |
|
fveq2 |
|- ( y = Y -> ( N ` y ) = ( N ` Y ) ) |
| 16 |
15
|
oveq2d |
|- ( y = Y -> ( ( A ` X ) x. ( N ` y ) ) = ( ( A ` X ) x. ( N ` Y ) ) ) |
| 17 |
14 16
|
eqeq12d |
|- ( y = Y -> ( ( N ` ( X .x. y ) ) = ( ( A ` X ) x. ( N ` y ) ) <-> ( N ` ( X .x. Y ) ) = ( ( A ` X ) x. ( N ` Y ) ) ) ) |
| 18 |
12 17
|
rspc2v |
|- ( ( X e. K /\ Y e. V ) -> ( A. x e. K A. y e. V ( N ` ( x .x. y ) ) = ( ( A ` x ) x. ( N ` y ) ) -> ( N ` ( X .x. Y ) ) = ( ( A ` X ) x. ( N ` Y ) ) ) ) |
| 19 |
8 18
|
syl5com |
|- ( W e. NrmMod -> ( ( X e. K /\ Y e. V ) -> ( N ` ( X .x. Y ) ) = ( ( A ` X ) x. ( N ` Y ) ) ) ) |
| 20 |
19
|
3impib |
|- ( ( W e. NrmMod /\ X e. K /\ Y e. V ) -> ( N ` ( X .x. Y ) ) = ( ( A ` X ) x. ( N ` Y ) ) ) |