| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tngnrg.t |
⊢ 𝑇 = ( 𝑅 toNrmGrp 𝐹 ) |
| 2 |
|
tngnrg.a |
⊢ 𝐴 = ( AbsVal ‘ 𝑅 ) |
| 3 |
2
|
abvrcl |
⊢ ( 𝐹 ∈ 𝐴 → 𝑅 ∈ Ring ) |
| 4 |
|
ringgrp |
⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Grp ) |
| 5 |
3 4
|
syl |
⊢ ( 𝐹 ∈ 𝐴 → 𝑅 ∈ Grp ) |
| 6 |
|
eqid |
⊢ ( -g ‘ 𝑅 ) = ( -g ‘ 𝑅 ) |
| 7 |
1 6
|
tngds |
⊢ ( 𝐹 ∈ 𝐴 → ( 𝐹 ∘ ( -g ‘ 𝑅 ) ) = ( dist ‘ 𝑇 ) ) |
| 8 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 9 |
8 2 6
|
abvmet |
⊢ ( 𝐹 ∈ 𝐴 → ( 𝐹 ∘ ( -g ‘ 𝑅 ) ) ∈ ( Met ‘ ( Base ‘ 𝑅 ) ) ) |
| 10 |
7 9
|
eqeltrrd |
⊢ ( 𝐹 ∈ 𝐴 → ( dist ‘ 𝑇 ) ∈ ( Met ‘ ( Base ‘ 𝑅 ) ) ) |
| 11 |
2 8
|
abvf |
⊢ ( 𝐹 ∈ 𝐴 → 𝐹 : ( Base ‘ 𝑅 ) ⟶ ℝ ) |
| 12 |
|
eqid |
⊢ ( dist ‘ 𝑇 ) = ( dist ‘ 𝑇 ) |
| 13 |
1 8 12
|
tngngp2 |
⊢ ( 𝐹 : ( Base ‘ 𝑅 ) ⟶ ℝ → ( 𝑇 ∈ NrmGrp ↔ ( 𝑅 ∈ Grp ∧ ( dist ‘ 𝑇 ) ∈ ( Met ‘ ( Base ‘ 𝑅 ) ) ) ) ) |
| 14 |
11 13
|
syl |
⊢ ( 𝐹 ∈ 𝐴 → ( 𝑇 ∈ NrmGrp ↔ ( 𝑅 ∈ Grp ∧ ( dist ‘ 𝑇 ) ∈ ( Met ‘ ( Base ‘ 𝑅 ) ) ) ) ) |
| 15 |
5 10 14
|
mpbir2and |
⊢ ( 𝐹 ∈ 𝐴 → 𝑇 ∈ NrmGrp ) |
| 16 |
|
reex |
⊢ ℝ ∈ V |
| 17 |
1 8 16
|
tngnm |
⊢ ( ( 𝑅 ∈ Grp ∧ 𝐹 : ( Base ‘ 𝑅 ) ⟶ ℝ ) → 𝐹 = ( norm ‘ 𝑇 ) ) |
| 18 |
5 11 17
|
syl2anc |
⊢ ( 𝐹 ∈ 𝐴 → 𝐹 = ( norm ‘ 𝑇 ) ) |
| 19 |
|
eqidd |
⊢ ( 𝐹 ∈ 𝐴 → ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) ) |
| 20 |
1 8
|
tngbas |
⊢ ( 𝐹 ∈ 𝐴 → ( Base ‘ 𝑅 ) = ( Base ‘ 𝑇 ) ) |
| 21 |
|
eqid |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) |
| 22 |
1 21
|
tngplusg |
⊢ ( 𝐹 ∈ 𝐴 → ( +g ‘ 𝑅 ) = ( +g ‘ 𝑇 ) ) |
| 23 |
22
|
oveqdr |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ) → ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝑇 ) 𝑦 ) ) |
| 24 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
| 25 |
1 24
|
tngmulr |
⊢ ( 𝐹 ∈ 𝐴 → ( .r ‘ 𝑅 ) = ( .r ‘ 𝑇 ) ) |
| 26 |
25
|
oveqdr |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ) → ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = ( 𝑥 ( .r ‘ 𝑇 ) 𝑦 ) ) |
| 27 |
19 20 23 26
|
abvpropd |
⊢ ( 𝐹 ∈ 𝐴 → ( AbsVal ‘ 𝑅 ) = ( AbsVal ‘ 𝑇 ) ) |
| 28 |
2 27
|
eqtrid |
⊢ ( 𝐹 ∈ 𝐴 → 𝐴 = ( AbsVal ‘ 𝑇 ) ) |
| 29 |
18 28
|
eleq12d |
⊢ ( 𝐹 ∈ 𝐴 → ( 𝐹 ∈ 𝐴 ↔ ( norm ‘ 𝑇 ) ∈ ( AbsVal ‘ 𝑇 ) ) ) |
| 30 |
29
|
ibi |
⊢ ( 𝐹 ∈ 𝐴 → ( norm ‘ 𝑇 ) ∈ ( AbsVal ‘ 𝑇 ) ) |
| 31 |
|
eqid |
⊢ ( norm ‘ 𝑇 ) = ( norm ‘ 𝑇 ) |
| 32 |
|
eqid |
⊢ ( AbsVal ‘ 𝑇 ) = ( AbsVal ‘ 𝑇 ) |
| 33 |
31 32
|
isnrg |
⊢ ( 𝑇 ∈ NrmRing ↔ ( 𝑇 ∈ NrmGrp ∧ ( norm ‘ 𝑇 ) ∈ ( AbsVal ‘ 𝑇 ) ) ) |
| 34 |
15 30 33
|
sylanbrc |
⊢ ( 𝐹 ∈ 𝐴 → 𝑇 ∈ NrmRing ) |