| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tngngp2.t |
⊢ 𝑇 = ( 𝐺 toNrmGrp 𝑁 ) |
| 2 |
|
tngngp2.x |
⊢ 𝑋 = ( Base ‘ 𝐺 ) |
| 3 |
|
tngngp2.d |
⊢ 𝐷 = ( dist ‘ 𝑇 ) |
| 4 |
|
ngpgrp |
⊢ ( 𝑇 ∈ NrmGrp → 𝑇 ∈ Grp ) |
| 5 |
2
|
fvexi |
⊢ 𝑋 ∈ V |
| 6 |
|
reex |
⊢ ℝ ∈ V |
| 7 |
|
fex2 |
⊢ ( ( 𝑁 : 𝑋 ⟶ ℝ ∧ 𝑋 ∈ V ∧ ℝ ∈ V ) → 𝑁 ∈ V ) |
| 8 |
5 6 7
|
mp3an23 |
⊢ ( 𝑁 : 𝑋 ⟶ ℝ → 𝑁 ∈ V ) |
| 9 |
2
|
a1i |
⊢ ( 𝑁 ∈ V → 𝑋 = ( Base ‘ 𝐺 ) ) |
| 10 |
1 2
|
tngbas |
⊢ ( 𝑁 ∈ V → 𝑋 = ( Base ‘ 𝑇 ) ) |
| 11 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
| 12 |
1 11
|
tngplusg |
⊢ ( 𝑁 ∈ V → ( +g ‘ 𝐺 ) = ( +g ‘ 𝑇 ) ) |
| 13 |
12
|
oveqdr |
⊢ ( ( 𝑁 ∈ V ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝑇 ) 𝑦 ) ) |
| 14 |
9 10 13
|
grppropd |
⊢ ( 𝑁 ∈ V → ( 𝐺 ∈ Grp ↔ 𝑇 ∈ Grp ) ) |
| 15 |
8 14
|
syl |
⊢ ( 𝑁 : 𝑋 ⟶ ℝ → ( 𝐺 ∈ Grp ↔ 𝑇 ∈ Grp ) ) |
| 16 |
4 15
|
imbitrrid |
⊢ ( 𝑁 : 𝑋 ⟶ ℝ → ( 𝑇 ∈ NrmGrp → 𝐺 ∈ Grp ) ) |
| 17 |
16
|
imp |
⊢ ( ( 𝑁 : 𝑋 ⟶ ℝ ∧ 𝑇 ∈ NrmGrp ) → 𝐺 ∈ Grp ) |
| 18 |
|
ngpms |
⊢ ( 𝑇 ∈ NrmGrp → 𝑇 ∈ MetSp ) |
| 19 |
18
|
adantl |
⊢ ( ( 𝑁 : 𝑋 ⟶ ℝ ∧ 𝑇 ∈ NrmGrp ) → 𝑇 ∈ MetSp ) |
| 20 |
|
eqid |
⊢ ( Base ‘ 𝑇 ) = ( Base ‘ 𝑇 ) |
| 21 |
20 3
|
msmet2 |
⊢ ( 𝑇 ∈ MetSp → ( 𝐷 ↾ ( ( Base ‘ 𝑇 ) × ( Base ‘ 𝑇 ) ) ) ∈ ( Met ‘ ( Base ‘ 𝑇 ) ) ) |
| 22 |
19 21
|
syl |
⊢ ( ( 𝑁 : 𝑋 ⟶ ℝ ∧ 𝑇 ∈ NrmGrp ) → ( 𝐷 ↾ ( ( Base ‘ 𝑇 ) × ( Base ‘ 𝑇 ) ) ) ∈ ( Met ‘ ( Base ‘ 𝑇 ) ) ) |
| 23 |
|
eqid |
⊢ ( -g ‘ 𝐺 ) = ( -g ‘ 𝐺 ) |
| 24 |
2 23
|
grpsubf |
⊢ ( 𝐺 ∈ Grp → ( -g ‘ 𝐺 ) : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ) |
| 25 |
17 24
|
syl |
⊢ ( ( 𝑁 : 𝑋 ⟶ ℝ ∧ 𝑇 ∈ NrmGrp ) → ( -g ‘ 𝐺 ) : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ) |
| 26 |
|
fco |
⊢ ( ( 𝑁 : 𝑋 ⟶ ℝ ∧ ( -g ‘ 𝐺 ) : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ) → ( 𝑁 ∘ ( -g ‘ 𝐺 ) ) : ( 𝑋 × 𝑋 ) ⟶ ℝ ) |
| 27 |
25 26
|
syldan |
⊢ ( ( 𝑁 : 𝑋 ⟶ ℝ ∧ 𝑇 ∈ NrmGrp ) → ( 𝑁 ∘ ( -g ‘ 𝐺 ) ) : ( 𝑋 × 𝑋 ) ⟶ ℝ ) |
| 28 |
8
|
adantr |
⊢ ( ( 𝑁 : 𝑋 ⟶ ℝ ∧ 𝑇 ∈ NrmGrp ) → 𝑁 ∈ V ) |
| 29 |
1 23
|
tngds |
⊢ ( 𝑁 ∈ V → ( 𝑁 ∘ ( -g ‘ 𝐺 ) ) = ( dist ‘ 𝑇 ) ) |
| 30 |
28 29
|
syl |
⊢ ( ( 𝑁 : 𝑋 ⟶ ℝ ∧ 𝑇 ∈ NrmGrp ) → ( 𝑁 ∘ ( -g ‘ 𝐺 ) ) = ( dist ‘ 𝑇 ) ) |
| 31 |
3 30
|
eqtr4id |
⊢ ( ( 𝑁 : 𝑋 ⟶ ℝ ∧ 𝑇 ∈ NrmGrp ) → 𝐷 = ( 𝑁 ∘ ( -g ‘ 𝐺 ) ) ) |
| 32 |
31
|
feq1d |
⊢ ( ( 𝑁 : 𝑋 ⟶ ℝ ∧ 𝑇 ∈ NrmGrp ) → ( 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ ↔ ( 𝑁 ∘ ( -g ‘ 𝐺 ) ) : ( 𝑋 × 𝑋 ) ⟶ ℝ ) ) |
| 33 |
27 32
|
mpbird |
⊢ ( ( 𝑁 : 𝑋 ⟶ ℝ ∧ 𝑇 ∈ NrmGrp ) → 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ ) |
| 34 |
|
ffn |
⊢ ( 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ → 𝐷 Fn ( 𝑋 × 𝑋 ) ) |
| 35 |
|
fnresdm |
⊢ ( 𝐷 Fn ( 𝑋 × 𝑋 ) → ( 𝐷 ↾ ( 𝑋 × 𝑋 ) ) = 𝐷 ) |
| 36 |
33 34 35
|
3syl |
⊢ ( ( 𝑁 : 𝑋 ⟶ ℝ ∧ 𝑇 ∈ NrmGrp ) → ( 𝐷 ↾ ( 𝑋 × 𝑋 ) ) = 𝐷 ) |
| 37 |
28 10
|
syl |
⊢ ( ( 𝑁 : 𝑋 ⟶ ℝ ∧ 𝑇 ∈ NrmGrp ) → 𝑋 = ( Base ‘ 𝑇 ) ) |
| 38 |
37
|
sqxpeqd |
⊢ ( ( 𝑁 : 𝑋 ⟶ ℝ ∧ 𝑇 ∈ NrmGrp ) → ( 𝑋 × 𝑋 ) = ( ( Base ‘ 𝑇 ) × ( Base ‘ 𝑇 ) ) ) |
| 39 |
38
|
reseq2d |
⊢ ( ( 𝑁 : 𝑋 ⟶ ℝ ∧ 𝑇 ∈ NrmGrp ) → ( 𝐷 ↾ ( 𝑋 × 𝑋 ) ) = ( 𝐷 ↾ ( ( Base ‘ 𝑇 ) × ( Base ‘ 𝑇 ) ) ) ) |
| 40 |
36 39
|
eqtr3d |
⊢ ( ( 𝑁 : 𝑋 ⟶ ℝ ∧ 𝑇 ∈ NrmGrp ) → 𝐷 = ( 𝐷 ↾ ( ( Base ‘ 𝑇 ) × ( Base ‘ 𝑇 ) ) ) ) |
| 41 |
37
|
fveq2d |
⊢ ( ( 𝑁 : 𝑋 ⟶ ℝ ∧ 𝑇 ∈ NrmGrp ) → ( Met ‘ 𝑋 ) = ( Met ‘ ( Base ‘ 𝑇 ) ) ) |
| 42 |
22 40 41
|
3eltr4d |
⊢ ( ( 𝑁 : 𝑋 ⟶ ℝ ∧ 𝑇 ∈ NrmGrp ) → 𝐷 ∈ ( Met ‘ 𝑋 ) ) |
| 43 |
17 42
|
jca |
⊢ ( ( 𝑁 : 𝑋 ⟶ ℝ ∧ 𝑇 ∈ NrmGrp ) → ( 𝐺 ∈ Grp ∧ 𝐷 ∈ ( Met ‘ 𝑋 ) ) ) |
| 44 |
15
|
biimpa |
⊢ ( ( 𝑁 : 𝑋 ⟶ ℝ ∧ 𝐺 ∈ Grp ) → 𝑇 ∈ Grp ) |
| 45 |
44
|
adantrr |
⊢ ( ( 𝑁 : 𝑋 ⟶ ℝ ∧ ( 𝐺 ∈ Grp ∧ 𝐷 ∈ ( Met ‘ 𝑋 ) ) ) → 𝑇 ∈ Grp ) |
| 46 |
|
simprr |
⊢ ( ( 𝑁 : 𝑋 ⟶ ℝ ∧ ( 𝐺 ∈ Grp ∧ 𝐷 ∈ ( Met ‘ 𝑋 ) ) ) → 𝐷 ∈ ( Met ‘ 𝑋 ) ) |
| 47 |
8
|
adantr |
⊢ ( ( 𝑁 : 𝑋 ⟶ ℝ ∧ ( 𝐺 ∈ Grp ∧ 𝐷 ∈ ( Met ‘ 𝑋 ) ) ) → 𝑁 ∈ V ) |
| 48 |
47 10
|
syl |
⊢ ( ( 𝑁 : 𝑋 ⟶ ℝ ∧ ( 𝐺 ∈ Grp ∧ 𝐷 ∈ ( Met ‘ 𝑋 ) ) ) → 𝑋 = ( Base ‘ 𝑇 ) ) |
| 49 |
48
|
fveq2d |
⊢ ( ( 𝑁 : 𝑋 ⟶ ℝ ∧ ( 𝐺 ∈ Grp ∧ 𝐷 ∈ ( Met ‘ 𝑋 ) ) ) → ( Met ‘ 𝑋 ) = ( Met ‘ ( Base ‘ 𝑇 ) ) ) |
| 50 |
46 49
|
eleqtrd |
⊢ ( ( 𝑁 : 𝑋 ⟶ ℝ ∧ ( 𝐺 ∈ Grp ∧ 𝐷 ∈ ( Met ‘ 𝑋 ) ) ) → 𝐷 ∈ ( Met ‘ ( Base ‘ 𝑇 ) ) ) |
| 51 |
|
metf |
⊢ ( 𝐷 ∈ ( Met ‘ ( Base ‘ 𝑇 ) ) → 𝐷 : ( ( Base ‘ 𝑇 ) × ( Base ‘ 𝑇 ) ) ⟶ ℝ ) |
| 52 |
|
ffn |
⊢ ( 𝐷 : ( ( Base ‘ 𝑇 ) × ( Base ‘ 𝑇 ) ) ⟶ ℝ → 𝐷 Fn ( ( Base ‘ 𝑇 ) × ( Base ‘ 𝑇 ) ) ) |
| 53 |
|
fnresdm |
⊢ ( 𝐷 Fn ( ( Base ‘ 𝑇 ) × ( Base ‘ 𝑇 ) ) → ( 𝐷 ↾ ( ( Base ‘ 𝑇 ) × ( Base ‘ 𝑇 ) ) ) = 𝐷 ) |
| 54 |
50 51 52 53
|
4syl |
⊢ ( ( 𝑁 : 𝑋 ⟶ ℝ ∧ ( 𝐺 ∈ Grp ∧ 𝐷 ∈ ( Met ‘ 𝑋 ) ) ) → ( 𝐷 ↾ ( ( Base ‘ 𝑇 ) × ( Base ‘ 𝑇 ) ) ) = 𝐷 ) |
| 55 |
54 50
|
eqeltrd |
⊢ ( ( 𝑁 : 𝑋 ⟶ ℝ ∧ ( 𝐺 ∈ Grp ∧ 𝐷 ∈ ( Met ‘ 𝑋 ) ) ) → ( 𝐷 ↾ ( ( Base ‘ 𝑇 ) × ( Base ‘ 𝑇 ) ) ) ∈ ( Met ‘ ( Base ‘ 𝑇 ) ) ) |
| 56 |
54
|
fveq2d |
⊢ ( ( 𝑁 : 𝑋 ⟶ ℝ ∧ ( 𝐺 ∈ Grp ∧ 𝐷 ∈ ( Met ‘ 𝑋 ) ) ) → ( MetOpen ‘ ( 𝐷 ↾ ( ( Base ‘ 𝑇 ) × ( Base ‘ 𝑇 ) ) ) ) = ( MetOpen ‘ 𝐷 ) ) |
| 57 |
|
simprl |
⊢ ( ( 𝑁 : 𝑋 ⟶ ℝ ∧ ( 𝐺 ∈ Grp ∧ 𝐷 ∈ ( Met ‘ 𝑋 ) ) ) → 𝐺 ∈ Grp ) |
| 58 |
|
eqid |
⊢ ( MetOpen ‘ 𝐷 ) = ( MetOpen ‘ 𝐷 ) |
| 59 |
1 3 58
|
tngtopn |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ V ) → ( MetOpen ‘ 𝐷 ) = ( TopOpen ‘ 𝑇 ) ) |
| 60 |
57 47 59
|
syl2anc |
⊢ ( ( 𝑁 : 𝑋 ⟶ ℝ ∧ ( 𝐺 ∈ Grp ∧ 𝐷 ∈ ( Met ‘ 𝑋 ) ) ) → ( MetOpen ‘ 𝐷 ) = ( TopOpen ‘ 𝑇 ) ) |
| 61 |
56 60
|
eqtr2d |
⊢ ( ( 𝑁 : 𝑋 ⟶ ℝ ∧ ( 𝐺 ∈ Grp ∧ 𝐷 ∈ ( Met ‘ 𝑋 ) ) ) → ( TopOpen ‘ 𝑇 ) = ( MetOpen ‘ ( 𝐷 ↾ ( ( Base ‘ 𝑇 ) × ( Base ‘ 𝑇 ) ) ) ) ) |
| 62 |
|
eqid |
⊢ ( TopOpen ‘ 𝑇 ) = ( TopOpen ‘ 𝑇 ) |
| 63 |
3
|
reseq1i |
⊢ ( 𝐷 ↾ ( ( Base ‘ 𝑇 ) × ( Base ‘ 𝑇 ) ) ) = ( ( dist ‘ 𝑇 ) ↾ ( ( Base ‘ 𝑇 ) × ( Base ‘ 𝑇 ) ) ) |
| 64 |
62 20 63
|
isms2 |
⊢ ( 𝑇 ∈ MetSp ↔ ( ( 𝐷 ↾ ( ( Base ‘ 𝑇 ) × ( Base ‘ 𝑇 ) ) ) ∈ ( Met ‘ ( Base ‘ 𝑇 ) ) ∧ ( TopOpen ‘ 𝑇 ) = ( MetOpen ‘ ( 𝐷 ↾ ( ( Base ‘ 𝑇 ) × ( Base ‘ 𝑇 ) ) ) ) ) ) |
| 65 |
55 61 64
|
sylanbrc |
⊢ ( ( 𝑁 : 𝑋 ⟶ ℝ ∧ ( 𝐺 ∈ Grp ∧ 𝐷 ∈ ( Met ‘ 𝑋 ) ) ) → 𝑇 ∈ MetSp ) |
| 66 |
|
simpl |
⊢ ( ( 𝑁 : 𝑋 ⟶ ℝ ∧ ( 𝐺 ∈ Grp ∧ 𝐷 ∈ ( Met ‘ 𝑋 ) ) ) → 𝑁 : 𝑋 ⟶ ℝ ) |
| 67 |
1 2 6
|
tngnm |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑁 : 𝑋 ⟶ ℝ ) → 𝑁 = ( norm ‘ 𝑇 ) ) |
| 68 |
57 66 67
|
syl2anc |
⊢ ( ( 𝑁 : 𝑋 ⟶ ℝ ∧ ( 𝐺 ∈ Grp ∧ 𝐷 ∈ ( Met ‘ 𝑋 ) ) ) → 𝑁 = ( norm ‘ 𝑇 ) ) |
| 69 |
9 10
|
eqtr3d |
⊢ ( 𝑁 ∈ V → ( Base ‘ 𝐺 ) = ( Base ‘ 𝑇 ) ) |
| 70 |
69 12
|
grpsubpropd |
⊢ ( 𝑁 ∈ V → ( -g ‘ 𝐺 ) = ( -g ‘ 𝑇 ) ) |
| 71 |
47 70
|
syl |
⊢ ( ( 𝑁 : 𝑋 ⟶ ℝ ∧ ( 𝐺 ∈ Grp ∧ 𝐷 ∈ ( Met ‘ 𝑋 ) ) ) → ( -g ‘ 𝐺 ) = ( -g ‘ 𝑇 ) ) |
| 72 |
68 71
|
coeq12d |
⊢ ( ( 𝑁 : 𝑋 ⟶ ℝ ∧ ( 𝐺 ∈ Grp ∧ 𝐷 ∈ ( Met ‘ 𝑋 ) ) ) → ( 𝑁 ∘ ( -g ‘ 𝐺 ) ) = ( ( norm ‘ 𝑇 ) ∘ ( -g ‘ 𝑇 ) ) ) |
| 73 |
47 29
|
syl |
⊢ ( ( 𝑁 : 𝑋 ⟶ ℝ ∧ ( 𝐺 ∈ Grp ∧ 𝐷 ∈ ( Met ‘ 𝑋 ) ) ) → ( 𝑁 ∘ ( -g ‘ 𝐺 ) ) = ( dist ‘ 𝑇 ) ) |
| 74 |
72 73
|
eqtr3d |
⊢ ( ( 𝑁 : 𝑋 ⟶ ℝ ∧ ( 𝐺 ∈ Grp ∧ 𝐷 ∈ ( Met ‘ 𝑋 ) ) ) → ( ( norm ‘ 𝑇 ) ∘ ( -g ‘ 𝑇 ) ) = ( dist ‘ 𝑇 ) ) |
| 75 |
|
eqimss |
⊢ ( ( ( norm ‘ 𝑇 ) ∘ ( -g ‘ 𝑇 ) ) = ( dist ‘ 𝑇 ) → ( ( norm ‘ 𝑇 ) ∘ ( -g ‘ 𝑇 ) ) ⊆ ( dist ‘ 𝑇 ) ) |
| 76 |
74 75
|
syl |
⊢ ( ( 𝑁 : 𝑋 ⟶ ℝ ∧ ( 𝐺 ∈ Grp ∧ 𝐷 ∈ ( Met ‘ 𝑋 ) ) ) → ( ( norm ‘ 𝑇 ) ∘ ( -g ‘ 𝑇 ) ) ⊆ ( dist ‘ 𝑇 ) ) |
| 77 |
|
eqid |
⊢ ( norm ‘ 𝑇 ) = ( norm ‘ 𝑇 ) |
| 78 |
|
eqid |
⊢ ( -g ‘ 𝑇 ) = ( -g ‘ 𝑇 ) |
| 79 |
|
eqid |
⊢ ( dist ‘ 𝑇 ) = ( dist ‘ 𝑇 ) |
| 80 |
77 78 79
|
isngp |
⊢ ( 𝑇 ∈ NrmGrp ↔ ( 𝑇 ∈ Grp ∧ 𝑇 ∈ MetSp ∧ ( ( norm ‘ 𝑇 ) ∘ ( -g ‘ 𝑇 ) ) ⊆ ( dist ‘ 𝑇 ) ) ) |
| 81 |
45 65 76 80
|
syl3anbrc |
⊢ ( ( 𝑁 : 𝑋 ⟶ ℝ ∧ ( 𝐺 ∈ Grp ∧ 𝐷 ∈ ( Met ‘ 𝑋 ) ) ) → 𝑇 ∈ NrmGrp ) |
| 82 |
43 81
|
impbida |
⊢ ( 𝑁 : 𝑋 ⟶ ℝ → ( 𝑇 ∈ NrmGrp ↔ ( 𝐺 ∈ Grp ∧ 𝐷 ∈ ( Met ‘ 𝑋 ) ) ) ) |