Step |
Hyp |
Ref |
Expression |
1 |
|
tngngp.t |
⊢ 𝑇 = ( 𝐺 toNrmGrp 𝑁 ) |
2 |
|
tngngp.x |
⊢ 𝑋 = ( Base ‘ 𝐺 ) |
3 |
|
tngngp.m |
⊢ − = ( -g ‘ 𝐺 ) |
4 |
|
tngngp.z |
⊢ 0 = ( 0g ‘ 𝐺 ) |
5 |
|
tngngpd.1 |
⊢ ( 𝜑 → 𝐺 ∈ Grp ) |
6 |
|
tngngpd.2 |
⊢ ( 𝜑 → 𝑁 : 𝑋 ⟶ ℝ ) |
7 |
|
tngngpd.3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑁 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ) |
8 |
|
tngngpd.4 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝑁 ‘ ( 𝑥 − 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) |
9 |
2
|
fvexi |
⊢ 𝑋 ∈ V |
10 |
|
reex |
⊢ ℝ ∈ V |
11 |
|
fex2 |
⊢ ( ( 𝑁 : 𝑋 ⟶ ℝ ∧ 𝑋 ∈ V ∧ ℝ ∈ V ) → 𝑁 ∈ V ) |
12 |
9 10 11
|
mp3an23 |
⊢ ( 𝑁 : 𝑋 ⟶ ℝ → 𝑁 ∈ V ) |
13 |
1 3
|
tngds |
⊢ ( 𝑁 ∈ V → ( 𝑁 ∘ − ) = ( dist ‘ 𝑇 ) ) |
14 |
6 12 13
|
3syl |
⊢ ( 𝜑 → ( 𝑁 ∘ − ) = ( dist ‘ 𝑇 ) ) |
15 |
2 3 4 5 6 7 8
|
nrmmetd |
⊢ ( 𝜑 → ( 𝑁 ∘ − ) ∈ ( Met ‘ 𝑋 ) ) |
16 |
14 15
|
eqeltrrd |
⊢ ( 𝜑 → ( dist ‘ 𝑇 ) ∈ ( Met ‘ 𝑋 ) ) |
17 |
|
eqid |
⊢ ( dist ‘ 𝑇 ) = ( dist ‘ 𝑇 ) |
18 |
1 2 17
|
tngngp2 |
⊢ ( 𝑁 : 𝑋 ⟶ ℝ → ( 𝑇 ∈ NrmGrp ↔ ( 𝐺 ∈ Grp ∧ ( dist ‘ 𝑇 ) ∈ ( Met ‘ 𝑋 ) ) ) ) |
19 |
6 18
|
syl |
⊢ ( 𝜑 → ( 𝑇 ∈ NrmGrp ↔ ( 𝐺 ∈ Grp ∧ ( dist ‘ 𝑇 ) ∈ ( Met ‘ 𝑋 ) ) ) ) |
20 |
5 16 19
|
mpbir2and |
⊢ ( 𝜑 → 𝑇 ∈ NrmGrp ) |