Metamath Proof Explorer


Theorem tngngpd

Description: Derive the axioms for a normed group from the axioms for a metric space. (Contributed by Mario Carneiro, 4-Oct-2015)

Ref Expression
Hypotheses tngngp.t T=GtoNrmGrpN
tngngp.x X=BaseG
tngngp.m -˙=-G
tngngp.z 0˙=0G
tngngpd.1 φGGrp
tngngpd.2 φN:X
tngngpd.3 φxXNx=0x=0˙
tngngpd.4 φxXyXNx-˙yNx+Ny
Assertion tngngpd φTNrmGrp

Proof

Step Hyp Ref Expression
1 tngngp.t T=GtoNrmGrpN
2 tngngp.x X=BaseG
3 tngngp.m -˙=-G
4 tngngp.z 0˙=0G
5 tngngpd.1 φGGrp
6 tngngpd.2 φN:X
7 tngngpd.3 φxXNx=0x=0˙
8 tngngpd.4 φxXyXNx-˙yNx+Ny
9 2 fvexi XV
10 reex V
11 fex2 N:XXVVNV
12 9 10 11 mp3an23 N:XNV
13 1 3 tngds NVN-˙=distT
14 6 12 13 3syl φN-˙=distT
15 2 3 4 5 6 7 8 nrmmetd φN-˙MetX
16 14 15 eqeltrrd φdistTMetX
17 eqid distT=distT
18 1 2 17 tngngp2 N:XTNrmGrpGGrpdistTMetX
19 6 18 syl φTNrmGrpGGrpdistTMetX
20 5 16 19 mpbir2and φTNrmGrp