Description: Derive the axioms for a normed group from the axioms for a metric space. (Contributed by Mario Carneiro, 4-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | tngngp.t | |
|
tngngp.x | |
||
tngngp.m | |
||
tngngp.z | |
||
tngngpd.1 | |
||
tngngpd.2 | |
||
tngngpd.3 | |
||
tngngpd.4 | |
||
Assertion | tngngpd | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tngngp.t | |
|
2 | tngngp.x | |
|
3 | tngngp.m | |
|
4 | tngngp.z | |
|
5 | tngngpd.1 | |
|
6 | tngngpd.2 | |
|
7 | tngngpd.3 | |
|
8 | tngngpd.4 | |
|
9 | 2 | fvexi | |
10 | reex | |
|
11 | fex2 | |
|
12 | 9 10 11 | mp3an23 | |
13 | 1 3 | tngds | |
14 | 6 12 13 | 3syl | |
15 | 2 3 4 5 6 7 8 | nrmmetd | |
16 | 14 15 | eqeltrrd | |
17 | eqid | |
|
18 | 1 2 17 | tngngp2 | |
19 | 6 18 | syl | |
20 | 5 16 19 | mpbir2and | |