Metamath Proof Explorer


Theorem tngds

Description: The metric function of a structure augmented with a norm. (Contributed by Mario Carneiro, 3-Oct-2015) (Proof shortened by AV, 29-Oct-2024)

Ref Expression
Hypotheses tngbas.t T=GtoNrmGrpN
tngds.2 -˙=-G
Assertion tngds NVN-˙=distT

Proof

Step Hyp Ref Expression
1 tngbas.t T=GtoNrmGrpN
2 tngds.2 -˙=-G
3 dsid dist=Slotdistndx
4 dsndxntsetndx distndxTopSetndx
5 3 4 setsnid distGsSetdistndxN-˙=distGsSetdistndxN-˙sSetTopSetndxMetOpenN-˙
6 2 fvexi -˙V
7 coexg NV-˙VN-˙V
8 6 7 mpan2 NVN-˙V
9 3 setsid GVN-˙VN-˙=distGsSetdistndxN-˙
10 8 9 sylan2 GVNVN-˙=distGsSetdistndxN-˙
11 eqid N-˙=N-˙
12 eqid MetOpenN-˙=MetOpenN-˙
13 1 2 11 12 tngval GVNVT=GsSetdistndxN-˙sSetTopSetndxMetOpenN-˙
14 13 fveq2d GVNVdistT=distGsSetdistndxN-˙sSetTopSetndxMetOpenN-˙
15 5 10 14 3eqtr4a GVNVN-˙=distT
16 co02 N=
17 3 str0 =dist
18 16 17 eqtri N=dist
19 fvprc ¬GV-G=
20 2 19 eqtrid ¬GV-˙=
21 20 coeq2d ¬GVN-˙=N
22 reldmtng ReldomtoNrmGrp
23 22 ovprc1 ¬GVGtoNrmGrpN=
24 1 23 eqtrid ¬GVT=
25 24 fveq2d ¬GVdistT=dist
26 18 21 25 3eqtr4a ¬GVN-˙=distT
27 26 adantr ¬GVNVN-˙=distT
28 15 27 pm2.61ian NVN-˙=distT