Metamath Proof Explorer


Definition df-ngp

Description: Define a normed group, which is a group with a right-translation-invariant metric. This is not a standard notion, but is helpful as the most general context in which a metric-like norm makes sense. (Contributed by Mario Carneiro, 2-Oct-2015)

Ref Expression
Assertion df-ngp NrmGrp=gGrpMetSp|normg-gdistg

Detailed syntax breakdown

Step Hyp Ref Expression
0 cngp classNrmGrp
1 vg setvarg
2 cgrp classGrp
3 cms classMetSp
4 2 3 cin classGrpMetSp
5 cnm classnorm
6 1 cv setvarg
7 6 5 cfv classnormg
8 csg class-𝑔
9 6 8 cfv class-g
10 7 9 ccom classnormg-g
11 cds classdist
12 6 11 cfv classdistg
13 10 12 wss wffnormg-gdistg
14 13 1 4 crab classgGrpMetSp|normg-gdistg
15 0 14 wceq wffNrmGrp=gGrpMetSp|normg-gdistg