Description: Define the (proper) class of all metrics. (A metric space is the metric's base set paired with the metric; see df-ms . However, we will often also call the metric itself a "metric space".) Equivalent to Definition 14-1.1 of Gleason p. 223. The 4 properties in Gleason's definition are shown by met0 , metgt0 , metsym , and mettri . (Contributed by NM, 25-Aug-2006)
Ref | Expression | ||
---|---|---|---|
Assertion | df-met | |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | cmet | |
|
1 | vx | |
|
2 | cvv | |
|
3 | vd | |
|
4 | cr | |
|
5 | cmap | |
|
6 | 1 | cv | |
7 | 6 6 | cxp | |
8 | 4 7 5 | co | |
9 | vy | |
|
10 | vz | |
|
11 | 9 | cv | |
12 | 3 | cv | |
13 | 10 | cv | |
14 | 11 13 12 | co | |
15 | cc0 | |
|
16 | 14 15 | wceq | |
17 | 11 13 | wceq | |
18 | 16 17 | wb | |
19 | vw | |
|
20 | cle | |
|
21 | 19 | cv | |
22 | 21 11 12 | co | |
23 | caddc | |
|
24 | 21 13 12 | co | |
25 | 22 24 23 | co | |
26 | 14 25 20 | wbr | |
27 | 26 19 6 | wral | |
28 | 18 27 | wa | |
29 | 28 10 6 | wral | |
30 | 29 9 6 | wral | |
31 | 30 3 8 | crab | |
32 | 1 2 31 | cmpt | |
33 | 0 32 | wceq | |