Metamath Proof Explorer


Theorem metgt0

Description: The distance function of a metric space is positive for unequal points. Definition 14-1.1(b) of Gleason p. 223 and its converse. (Contributed by NM, 27-Aug-2006)

Ref Expression
Assertion metgt0 DMetXAXBXAB0<ADB

Proof

Step Hyp Ref Expression
1 metxmet DMetXD∞MetX
2 xmetgt0 D∞MetXAXBXAB0<ADB
3 1 2 syl3an1 DMetXAXBXAB0<ADB