Metamath Proof Explorer


Definition df-xmet

Description: Define the set of all extended metrics on a given base set. The definition is similar to df-met , but we also allow the metric to take on the value +oo . (Contributed by Mario Carneiro, 20-Aug-2015)

Ref Expression
Assertion df-xmet ∞Met=xVd*x×x|yxzxydz=0y=zwxydzwdy+𝑒wdz

Detailed syntax breakdown

Step Hyp Ref Expression
0 cxmet class∞Met
1 vx setvarx
2 cvv classV
3 vd setvard
4 cxr class*
5 cmap class𝑚
6 1 cv setvarx
7 6 6 cxp classx×x
8 4 7 5 co class*x×x
9 vy setvary
10 vz setvarz
11 9 cv setvary
12 3 cv setvard
13 10 cv setvarz
14 11 13 12 co classydz
15 cc0 class0
16 14 15 wceq wffydz=0
17 11 13 wceq wffy=z
18 16 17 wb wffydz=0y=z
19 vw setvarw
20 cle class
21 19 cv setvarw
22 21 11 12 co classwdy
23 cxad class+𝑒
24 21 13 12 co classwdz
25 22 24 23 co classwdy+𝑒wdz
26 14 25 20 wbr wffydzwdy+𝑒wdz
27 26 19 6 wral wffwxydzwdy+𝑒wdz
28 18 27 wa wffydz=0y=zwxydzwdy+𝑒wdz
29 28 10 6 wral wffzxydz=0y=zwxydzwdy+𝑒wdz
30 29 9 6 wral wffyxzxydz=0y=zwxydzwdy+𝑒wdz
31 30 3 8 crab classd*x×x|yxzxydz=0y=zwxydzwdy+𝑒wdz
32 1 2 31 cmpt classxVd*x×x|yxzxydz=0y=zwxydzwdy+𝑒wdz
33 0 32 wceq wff∞Met=xVd*x×x|yxzxydz=0y=zwxydzwdy+𝑒wdz