Metamath Proof Explorer


Theorem xmetgt0

Description: The distance function of an extended metric space is positive for unequal points. (Contributed by Mario Carneiro, 20-Aug-2015)

Ref Expression
Assertion xmetgt0 D∞MetXAXBXAB0<ADB

Proof

Step Hyp Ref Expression
1 xmetge0 D∞MetXAXBX0ADB
2 1 biantrud D∞MetXAXBXADB0ADB00ADB
3 xmetcl D∞MetXAXBXADB*
4 0xr 0*
5 xrletri3 ADB*0*ADB=0ADB00ADB
6 3 4 5 sylancl D∞MetXAXBXADB=0ADB00ADB
7 2 6 bitr4d D∞MetXAXBXADB0ADB=0
8 xrlenlt ADB*0*ADB0¬0<ADB
9 3 4 8 sylancl D∞MetXAXBXADB0¬0<ADB
10 xmeteq0 D∞MetXAXBXADB=0A=B
11 7 9 10 3bitr3d D∞MetXAXBX¬0<ADBA=B
12 11 necon1abid D∞MetXAXBXAB0<ADB