Metamath Proof Explorer


Theorem xmetcl

Description: Closure of the distance function of a metric space. Part of Property M1 of Kreyszig p. 3. (Contributed by NM, 30-Aug-2006)

Ref Expression
Assertion xmetcl D∞MetXAXBXADB*

Proof

Step Hyp Ref Expression
1 xmetf D∞MetXD:X×X*
2 fovcdm D:X×X*AXBXADB*
3 1 2 syl3an1 D∞MetXAXBXADB*