Metamath Proof Explorer


Theorem xmeteq0

Description: The value of an extended metric is zero iff its arguments are equal. (Contributed by Mario Carneiro, 20-Aug-2015)

Ref Expression
Assertion xmeteq0 D∞MetXAXBXADB=0A=B

Proof

Step Hyp Ref Expression
1 elfvdm D∞MetXXdom∞Met
2 isxmet Xdom∞MetD∞MetXD:X×X*xXyXxDy=0x=yzXxDyzDx+𝑒zDy
3 1 2 syl D∞MetXD∞MetXD:X×X*xXyXxDy=0x=yzXxDyzDx+𝑒zDy
4 3 ibi D∞MetXD:X×X*xXyXxDy=0x=yzXxDyzDx+𝑒zDy
5 simpl xDy=0x=yzXxDyzDx+𝑒zDyxDy=0x=y
6 5 2ralimi xXyXxDy=0x=yzXxDyzDx+𝑒zDyxXyXxDy=0x=y
7 4 6 simpl2im D∞MetXxXyXxDy=0x=y
8 oveq1 x=AxDy=ADy
9 8 eqeq1d x=AxDy=0ADy=0
10 eqeq1 x=Ax=yA=y
11 9 10 bibi12d x=AxDy=0x=yADy=0A=y
12 oveq2 y=BADy=ADB
13 12 eqeq1d y=BADy=0ADB=0
14 eqeq2 y=BA=yA=B
15 13 14 bibi12d y=BADy=0A=yADB=0A=B
16 11 15 rspc2v AXBXxXyXxDy=0x=yADB=0A=B
17 7 16 syl5com D∞MetXAXBXADB=0A=B
18 17 3impib D∞MetXAXBXADB=0A=B