Metamath Proof Explorer


Theorem metn0

Description: A metric space is nonempty iff its base set is nonempty. (Contributed by NM, 4-Oct-2007) (Revised by Mario Carneiro, 14-Aug-2015)

Ref Expression
Assertion metn0 DMetXDX

Proof

Step Hyp Ref Expression
1 metf DMetXD:X×X
2 frel D:X×XRelD
3 reldm0 RelDD=domD=
4 1 2 3 3syl DMetXD=domD=
5 1 fdmd DMetXdomD=X×X
6 5 eqeq1d DMetXdomD=X×X=
7 4 6 bitrd DMetXD=X×X=
8 xpeq0 X×X=X=X=
9 oridm X=X=X=
10 8 9 bitri X×X=X=
11 7 10 bitrdi DMetXD=X=
12 11 necon3bid DMetXDX