Metamath Proof Explorer


Theorem xpeq0

Description: At least one member of an empty Cartesian product is empty. (Contributed by NM, 27-Aug-2006)

Ref Expression
Assertion xpeq0 A×B=A=B=

Proof

Step Hyp Ref Expression
1 xpnz ABA×B
2 1 necon2bbii A×B=¬AB
3 ianor ¬AB¬A¬B
4 nne ¬AA=
5 nne ¬BB=
6 4 5 orbi12i ¬A¬BA=B=
7 2 3 6 3bitri A×B=A=B=