Metamath Proof Explorer


Theorem xmetres2

Description: Restriction of an extended metric. (Contributed by Mario Carneiro, 20-Aug-2015)

Ref Expression
Assertion xmetres2 D∞MetXRXDR×R∞MetR

Proof

Step Hyp Ref Expression
1 elfvdm D∞MetXXdom∞Met
2 1 adantr D∞MetXRXXdom∞Met
3 simpr D∞MetXRXRX
4 2 3 ssexd D∞MetXRXRV
5 xmetf D∞MetXD:X×X*
6 5 adantr D∞MetXRXD:X×X*
7 xpss12 RXRXR×RX×X
8 3 7 sylancom D∞MetXRXR×RX×X
9 6 8 fssresd D∞MetXRXDR×R:R×R*
10 ovres xRyRxDR×Ry=xDy
11 10 adantl D∞MetXRXxRyRxDR×Ry=xDy
12 11 eqeq1d D∞MetXRXxRyRxDR×Ry=0xDy=0
13 simpll D∞MetXRXxRyRD∞MetX
14 simplr D∞MetXRXxRyRRX
15 simprl D∞MetXRXxRyRxR
16 14 15 sseldd D∞MetXRXxRyRxX
17 simprr D∞MetXRXxRyRyR
18 14 17 sseldd D∞MetXRXxRyRyX
19 xmeteq0 D∞MetXxXyXxDy=0x=y
20 13 16 18 19 syl3anc D∞MetXRXxRyRxDy=0x=y
21 12 20 bitrd D∞MetXRXxRyRxDR×Ry=0x=y
22 simpll D∞MetXRXxRyRzRD∞MetX
23 simplr D∞MetXRXxRyRzRRX
24 simpr3 D∞MetXRXxRyRzRzR
25 23 24 sseldd D∞MetXRXxRyRzRzX
26 16 3adantr3 D∞MetXRXxRyRzRxX
27 18 3adantr3 D∞MetXRXxRyRzRyX
28 xmettri2 D∞MetXzXxXyXxDyzDx+𝑒zDy
29 22 25 26 27 28 syl13anc D∞MetXRXxRyRzRxDyzDx+𝑒zDy
30 11 3adantr3 D∞MetXRXxRyRzRxDR×Ry=xDy
31 simpr1 D∞MetXRXxRyRzRxR
32 24 31 ovresd D∞MetXRXxRyRzRzDR×Rx=zDx
33 simpr2 D∞MetXRXxRyRzRyR
34 24 33 ovresd D∞MetXRXxRyRzRzDR×Ry=zDy
35 32 34 oveq12d D∞MetXRXxRyRzRzDR×Rx+𝑒zDR×Ry=zDx+𝑒zDy
36 29 30 35 3brtr4d D∞MetXRXxRyRzRxDR×RyzDR×Rx+𝑒zDR×Ry
37 4 9 21 36 isxmetd D∞MetXRXDR×R∞MetR