Metamath Proof Explorer


Theorem 3brtr4d

Description: Substitution of equality into both sides of a binary relation. (Contributed by NM, 21-Feb-2005)

Ref Expression
Hypotheses 3brtr4d.1 φARB
3brtr4d.2 φC=A
3brtr4d.3 φD=B
Assertion 3brtr4d φCRD

Proof

Step Hyp Ref Expression
1 3brtr4d.1 φARB
2 3brtr4d.2 φC=A
3 3brtr4d.3 φD=B
4 2 3 breq12d φCRDARB
5 1 4 mpbird φCRD