Metamath Proof Explorer


Definition df-met

Description: Define the (proper) class of all metrics. (A metric space is the metric's base set paired with the metric; see df-ms . However, we will often also call the metric itself a "metric space".) Equivalent to Definition 14-1.1 of Gleason p. 223. The 4 properties in Gleason's definition are shown by met0 , metgt0 , metsym , and mettri . (Contributed by NM, 25-Aug-2006)

Ref Expression
Assertion df-met Met = ( 𝑥 ∈ V ↦ { 𝑑 ∈ ( ℝ ↑m ( 𝑥 × 𝑥 ) ) ∣ ∀ 𝑦𝑥𝑧𝑥 ( ( ( 𝑦 𝑑 𝑧 ) = 0 ↔ 𝑦 = 𝑧 ) ∧ ∀ 𝑤𝑥 ( 𝑦 𝑑 𝑧 ) ≤ ( ( 𝑤 𝑑 𝑦 ) + ( 𝑤 𝑑 𝑧 ) ) ) } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cmet Met
1 vx 𝑥
2 cvv V
3 vd 𝑑
4 cr
5 cmap m
6 1 cv 𝑥
7 6 6 cxp ( 𝑥 × 𝑥 )
8 4 7 5 co ( ℝ ↑m ( 𝑥 × 𝑥 ) )
9 vy 𝑦
10 vz 𝑧
11 9 cv 𝑦
12 3 cv 𝑑
13 10 cv 𝑧
14 11 13 12 co ( 𝑦 𝑑 𝑧 )
15 cc0 0
16 14 15 wceq ( 𝑦 𝑑 𝑧 ) = 0
17 11 13 wceq 𝑦 = 𝑧
18 16 17 wb ( ( 𝑦 𝑑 𝑧 ) = 0 ↔ 𝑦 = 𝑧 )
19 vw 𝑤
20 cle
21 19 cv 𝑤
22 21 11 12 co ( 𝑤 𝑑 𝑦 )
23 caddc +
24 21 13 12 co ( 𝑤 𝑑 𝑧 )
25 22 24 23 co ( ( 𝑤 𝑑 𝑦 ) + ( 𝑤 𝑑 𝑧 ) )
26 14 25 20 wbr ( 𝑦 𝑑 𝑧 ) ≤ ( ( 𝑤 𝑑 𝑦 ) + ( 𝑤 𝑑 𝑧 ) )
27 26 19 6 wral 𝑤𝑥 ( 𝑦 𝑑 𝑧 ) ≤ ( ( 𝑤 𝑑 𝑦 ) + ( 𝑤 𝑑 𝑧 ) )
28 18 27 wa ( ( ( 𝑦 𝑑 𝑧 ) = 0 ↔ 𝑦 = 𝑧 ) ∧ ∀ 𝑤𝑥 ( 𝑦 𝑑 𝑧 ) ≤ ( ( 𝑤 𝑑 𝑦 ) + ( 𝑤 𝑑 𝑧 ) ) )
29 28 10 6 wral 𝑧𝑥 ( ( ( 𝑦 𝑑 𝑧 ) = 0 ↔ 𝑦 = 𝑧 ) ∧ ∀ 𝑤𝑥 ( 𝑦 𝑑 𝑧 ) ≤ ( ( 𝑤 𝑑 𝑦 ) + ( 𝑤 𝑑 𝑧 ) ) )
30 29 9 6 wral 𝑦𝑥𝑧𝑥 ( ( ( 𝑦 𝑑 𝑧 ) = 0 ↔ 𝑦 = 𝑧 ) ∧ ∀ 𝑤𝑥 ( 𝑦 𝑑 𝑧 ) ≤ ( ( 𝑤 𝑑 𝑦 ) + ( 𝑤 𝑑 𝑧 ) ) )
31 30 3 8 crab { 𝑑 ∈ ( ℝ ↑m ( 𝑥 × 𝑥 ) ) ∣ ∀ 𝑦𝑥𝑧𝑥 ( ( ( 𝑦 𝑑 𝑧 ) = 0 ↔ 𝑦 = 𝑧 ) ∧ ∀ 𝑤𝑥 ( 𝑦 𝑑 𝑧 ) ≤ ( ( 𝑤 𝑑 𝑦 ) + ( 𝑤 𝑑 𝑧 ) ) ) }
32 1 2 31 cmpt ( 𝑥 ∈ V ↦ { 𝑑 ∈ ( ℝ ↑m ( 𝑥 × 𝑥 ) ) ∣ ∀ 𝑦𝑥𝑧𝑥 ( ( ( 𝑦 𝑑 𝑧 ) = 0 ↔ 𝑦 = 𝑧 ) ∧ ∀ 𝑤𝑥 ( 𝑦 𝑑 𝑧 ) ≤ ( ( 𝑤 𝑑 𝑦 ) + ( 𝑤 𝑑 𝑧 ) ) ) } )
33 0 32 wceq Met = ( 𝑥 ∈ V ↦ { 𝑑 ∈ ( ℝ ↑m ( 𝑥 × 𝑥 ) ) ∣ ∀ 𝑦𝑥𝑧𝑥 ( ( ( 𝑦 𝑑 𝑧 ) = 0 ↔ 𝑦 = 𝑧 ) ∧ ∀ 𝑤𝑥 ( 𝑦 𝑑 𝑧 ) ≤ ( ( 𝑤 𝑑 𝑦 ) + ( 𝑤 𝑑 𝑧 ) ) ) } )