Metamath Proof Explorer


Theorem met0

Description: The distance function of a metric space is zero if its arguments are equal. Definition 14-1.1(a) of Gleason p. 223. (Contributed by NM, 30-Aug-2006)

Ref Expression
Assertion met0 ( ( 𝐷 ∈ ( Met β€˜ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) β†’ ( 𝐴 𝐷 𝐴 ) = 0 )

Proof

Step Hyp Ref Expression
1 metxmet ⊒ ( 𝐷 ∈ ( Met β€˜ 𝑋 ) β†’ 𝐷 ∈ ( ∞Met β€˜ 𝑋 ) )
2 xmet0 ⊒ ( ( 𝐷 ∈ ( ∞Met β€˜ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) β†’ ( 𝐴 𝐷 𝐴 ) = 0 )
3 1 2 sylan ⊒ ( ( 𝐷 ∈ ( Met β€˜ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) β†’ ( 𝐴 𝐷 𝐴 ) = 0 )